Abstract:
A localized source selection and power conversion power distribution system is described herein. In contrast to legacy systems, where multiple bus tie connectors are coupled between the centralized buses, the localized source selection and power conversion power distribution system is, in general, solely linked by a post conversion link. The localized source selection and power conversion power distribution system is also configured to effectively balance the loads of the aircraft. For example, that any power district can draw power from any power source at any time.
Abstract:
A power conversion and distribution system detects faults by monitoring differential current and differential power at certain locations in the system. Current loss faults are detected based on the monitored differential current, and series arc faults are detected based on the monitored differential power. A system controller may make the fault determinations and disable a power converter circuit of the power conversion and distribution system in response to detection of a fault.
Abstract:
An arc fault detection system includes a first current sensor, a second current sensor, a band-pass filter, and a comparator module. The first current sensor, the second current sensor, and the comparator module are each connected to the comparator module by direct leads for biasing a current differential between the first current sensor and the second current sensor using a bias calculated from a frequency component indicative of arc events received from the frequency selector.
Abstract:
A power conversion and distribution system detects faults by monitoring differential current and differential power at certain locations in the system. Current loss faults are detected based on the monitored differential current, and series arc faults are detected based on the monitored differential power. A system controller may make the fault determinations and disable a power converter circuit of the power conversion and distribution system in response to detection of a fault.
Abstract:
A variable-speed constant-frequency (VSCF) power converter includes a generator control operable to regulate an output voltage of a variable frequency generator at a variable frequency. The VSCF power generator also includes an inverter control operable to regulate a VSCF output voltage at a point-of-regulation at a constant frequency, where the generator control and the inverter control independently control a main line contactor of the point-of-regulation to provide redundant fault protection for an aircraft use.
Abstract:
An arc fault detection system includes a first current sensor, a second current sensor, a band-pass filter, and a comparator module. The first current sensor, the second current sensor, and the comparator module are each connected to the comparator module by direct leads for biasing a current differential between the first current sensor and the second current sensor using a bias calculated from a frequency component indicative of arc events received from the frequency selector.
Abstract:
A system comprising a transformer rectifier unit (TRU) and a protection module operatively connected to an alternating current (AC) bus and configured to receive an AC power signal from the AC bus. The protection module is configured to monitor one or more parameters of the AC power signal and is configured to control a protection module output in response to the one or more parameters of the AC power signal. The protection module output is operatively connected to the TRU, which is configured to generate a direct current (DC) output signal. An associated method is also disclosed.
Abstract:
A variable-speed constant-frequency (VSCF) power converter includes a generator control operable to regulate an output voltage of a variable frequency generator at a variable frequency. The VSCF power generator also includes an inverter control operable to regulate a VSCF output voltage at a point-of-regulation at a constant frequency, where the generator control and the inverter control independently control a main line contactor of the point-of-regulation to provide redundant fault protection for an aircraft use.