Abstract:
A multi-level power converter system includes a multi-level power converter configured to synthesize at least three direct current (DC) voltages into an alternating current (AC) output voltage, and includes a plurality of transistors. A controller generates pulse-width modulation (PWM) signals used to control a state of the plurality of transistors of the multi-level converter by comparing first and second carrier signals to a reference signals, wherein a period of the first and second carrier signals is randomly varied from a nominal period.
Abstract:
A multi-level power converter system includes a multi-level power converter configured to synthesize at least three direct current (DC) voltages into an alternating current (AC) output voltage, and includes a plurality of transistors. A controller generates pulse-width modulation (PWM) signals used to control a state of the plurality of transistors of the multi-level converter by comparing first and second carrier signals to a reference signals, wherein a period of the first and second carrier signals is randomly varied from a nominal period.
Abstract:
A power converter system includes an interleaved power converter having a plurality of parallel-connected phase legs between DC terminals and an AC terminal. A plurality of parallel-connected inductors are each connected to one of the plurality of parallel-connected phase legs to provide a summed output of the parallel-connected phase legs to the AC terminal. A controller generates PWM signals used to control the state of each of the plurality of phase legs by comparing a carrier signal to a reference signal, wherein a period of the carrier signal is randomly varied from a nominal period.