摘要:
A method of making an electrolytic cell in which an electrolyte layer of an intermediate sintered form is coated with a pre-coat layer containing electrically non-conductive particles of less than about one-tenth of a micron in size to fill in defects existing within the electrolyte layer. The pre-coat layer is removed so that the electrically non-conductive particles remain within the defects of the electrolyte layer. The cathode layer is then applied to the electrolyte layer with the electrically non-conductive particles in place within the defects. The intermediate sintered form is fired with the applied cathode layer to produce the electrolytic cell.
摘要:
A method of making an electrolytic cell in which an electrolyte layer of an intermediate sintered form is coated with a pre-coat layer containing electrically non-conductive particles of less than about one-tenth of a micron in size to fill in defects existing within the electrolyte layer. The pre-coat layer is removed so that the electrically non-conductive particles remain within the defects of the electrolyte layer. The cathode layer is then applied to the electrolyte layer with the electrically non-conductive particles in place within the defects. The intermediate sintered form is fired with the applied cathode layer to produce the electrolytic cell.
摘要:
A method of producing a green form for use in manufacturing a composite, ceramic ion transport membrane is provided in which first and second ceramic powder mixtures are used to produce first and second layers of the green form. The first and second ceramic powder mixtures have ceramic particles and a pore former. After formation of each of the first and second layers or after formation of the second layer, heat is applied to burn out the binder and form pores. This heating is completed prior to application of a dense layer to prevent production of defects within the dense layer. The dense layer contains an ion transport material. Defects are also prevented by grading particle size from the first layer to the dense layer. This allows the second intermediate layer to fill in larger pores of the first layer and to present a smooth surface to the dense layer. Additionally, the second ceramic powder mixture contains in part material used in forming the dense layer for thermal expansion compatibility purposes.
摘要:
A method of manufacturing an electrolytic cell in which an intermediate sintered form is produced that comprises a porous anode layer and an electrolyte layer having a prespecified shape of the electrolytic cell. The electrolyte layer has defects extending through the electrolyte layer. A substance by way of a pressure, a solvent, particle suspended in a solvent or particles introduced by way of thermal spray are introduced into defects within the electrolyte layer. Thereafter, a green cathode layer is applied to the electrolyte layer while the substance is in place, within the defects. The intermediate sintered form with the applied green cathode layer is then fired to produce the electrolytic cell.
摘要:
A wall construction for an electrolytic cell to separate oxygen from an oxygen containing gas in which an electrolyte layer of less than 200 microns and a cathode layer of less than 500 microns are supported by an anode that can have a sufficient thickness to also contain the separated oxygen at pressure. The cathode is formed from the same material as the electrolyte and also a noble metal or noble metal alloy and a mixed conductor. The cathode contains a sufficient amount of the noble metal or noble metal allow and the mixed conductor that the total resistance thereof is not greater than about 70 percent of the total resistance of the anode and the cathode. In a preferred embodiment, first and second porous interfacial layers are situated between an anode layer and the electrolyte and the electrolyte and a cathode layer, respectively. The first and second porous interfacial layers increase thermal compatibility between the anode and cathode and the electrolyte, improve the three-phase boundary and allow thinner electrolytes to be employed with fewer manufacturing defects.
摘要:
A delivery wire assembly for delivering an occlusive device to a location in a patient's vasculature, includes delivery wire conduit defining a conduit lumen, a core wire disposed in the conduit lumen, the core wire having a distal detachment zone, and an enhancing coil disposed around the distal detachment zone, the enhancing coil configured to transfer a distally directed force from the delivery wire assembly to objects located distal of the delivery wire assembly without damaging the distal detachment zone. In one embodiment, the enhancing coil includes a proximal section having a first diameter, a distal section having a diameter larger than the diameter of the proximal section, and a transition section connecting the respective proximal and distal sections, wherein the transition section flares radially in a distal direction.
摘要:
A delivery wire assembly for delivery of an occlusive device to a location in a patient's vasculature includes a delivery wire conduit having a proximal tubular portion coupled to a distal coil portion, the respective tubular and coil portions defining a conduit lumen. A core wire is disposed in the conduit lumen and having a distal end coupled to an occlusive device, wherein an elongate electrical contact body at least partially seated in the conduit lumen and coupled to a proximal end of the core wire, the electrical contact body and the proximal tubular portion forming a junction. A coil collar is disposed around the electrical contact body near the junction.
摘要:
A medical device with a corrugated shaping ribbon is provided. The corrugated shaping ribbon for the medical device, which may be provided in the form of a guide wire or catheter, specifically a crossing guide wire or catheter, provides a mechanism by which energy can be stored as the distal tip of the medical device engages a lesion or other area of occlusion within a blood vessel. By storing such energy and continuing to apply force, eventually the distal tip extends thereby releasing the stored energy and allowing the distal tip to advance or cross through the lesion.
摘要:
A vaso-occlusive device includes a coil having a proximal end and a distal end, wherein the coil comprises a helically wounded elongated member having a core and an outer layer, the outer layer being made from a metal or alloy, and has a stiffness that is different from a stiffness of the core. A vaso-occlusive device includes a first coil and a second coil, wherein the first and the second coils are coupled to each other such that at least one loop from the first coil is between two adjacent loops from the second coil, and wherein the first coil is made from a first material, and the second coil is made from a second material that is stiffer than the first material. A vaso-occlusive device includes an outer coil having a plurality of loops that define a lumen therethrough, and an inner coil located within the lumen of the outer coil, wherein the outer and inner coils are each made from a metal or an alloy, such as platinum or a platinum-tungsten alloy.
摘要:
A delivery wire assembly for delivery of an occlusive device to a location in a patient's vasculature includes a delivery wire conduit having a proximal tubular portion coupled to a distal coil portion, the respective tubular and coil portions defining a conduit lumen, a plug at least partially seated in the conduit lumen and coupled to an interior surface of the coil portion so as to form a substantially fluid tight seal of the conduit lumen, and a core wire disposed in the conduit lumen, the core wire having a distal end extending through the plug and coupled to an occlusive device