摘要:
To measure a process parameter of a semiconductor fabrication process, the fabrication process is performed on a first area using a first value of the process parameter. The fabrication process is performed on a second area using a second value of the process parameter. A first measurement of the first area is obtained using an optical metrology tool. A second measurement of the second area is obtained using the optical metrology tool. One or more optical properties of the first area are determined based on the first measurement. One or more optical properties of the second area are determined based on the second measurement. The fabrication process is performed on a third area. A third measurement of the third area is obtained using the optical metrology tool. A third value of the process parameter is determined based on the third measurement and a relationship between the determined optical properties of the first and second areas.
摘要:
To measure a process parameter of a semiconductor fabrication process, the fabrication process is performed on a first area using a first value of the process parameter. The fabrication process is performed on a second area using a second value of the process parameter. A first measurement of the first area is obtained using an optical metrology tool. A second measurement of the second area is obtained using the optical metrology tool. One or more optical properties of the first area are determined based on the first measurement. One or more optical properties of the second area are determined based on the second measurement. The fabrication process is performed on a third area. A third measurement of the third area is obtained using the optical metrology tool. A third value of the process parameter is determined based on the third measurement and a relationship between the determined optical properties of the first and second areas.
摘要:
To measure a process parameter of a semiconductor fabrication process, the fabrication process is performed on a first area using a first value of the process parameter. The fabrication process is performed on a second area using a second value of the process parameter. A first measurement of the first area is obtained using an optical metrology tool. A second measurement of the second area is obtained using the optical metrology tool. One or more optical properties of the first area are determined based on the first measurement. One or more optical properties of the second area are determined based on the second measurement. The fabrication process is performed on a third area. A third measurement of the third area is obtained using the optical metrology tool. A third value of the process parameter is determined based on the third measurement and a relationship between the determined optical properties of the first and second areas.
摘要:
Optical metrology tools are matched by obtaining a first set of measured diffraction signals, which was measured using a first optical metrology tool, and a second set of measured diffraction signals, which was measured using a second optical metrology tool. A first spectra-shift offset is generated based on the difference between the first set of measured diffraction signals and the second set of measured diffraction signals. A first noise weighting function for the first optical metrology tool is generated based on measured diffraction signals measured using the first optical metrology tool. A first measured diffraction signal measured using the first optical metrology tool is obtained. A first adjusted diffraction signal is generated by adjusting the first measured diffraction signal using the first spectra-shift offset and the first noise weighting function.
摘要:
A weighting function is obtained to enhance measured diffraction signals used in optical metrology. To obtain the weighting function, a measured diffraction signal is obtained. The measured diffraction signal was measured from a site on a wafer using a photometric device. A first weighting function is defined based on noise that exists in the measured diffraction signal. A second weighting function is defined based on accuracy of the measured diffraction signal. A third weighting function is defined based on sensitivity of the measured diffraction signal. A fourth weighting function is defined based on one or more of the first, second, and third weighting functions.
摘要:
Metrology data from a semiconductor treatment system is transformed using multivariate analysis. In particular, a set of metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. One or more essential variables for the obtained set of metrology data is determined using multivariate analysis. A first metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. The first obtained metrology data is not one of the metrology data in the set of metrology data earlier obtained. The first metrology data is transformed into a second metrology data using the one or more of the determined essential variables.
摘要:
A weighting function is obtained to enhance measured diffraction signals used in optical metrology. To obtain the weighting function, a measured diffraction signal is obtained. The measured diffraction signal was measured from a site on a wafer using a photometric device. A first weighting function is defined based on noise that exists in the measured diffraction signal. A second weighting function is defined based on accuracy of the measured diffraction signal. A third weighting function is defined based on sensitivity of the measured diffraction signal. A fourth weighting function is defined based on one or more of the first, second, and third weighting functions.
摘要:
Metrology data from a semiconductor treatment system is transformed using multivariate analysis. In particular, a set of metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. One or more essential variables for the obtained set of metrology data is determined using multivariate analysis. A first metrology data measured or simulated for one or more substrates treated using the treatment system is obtained. The first obtained metrology data is not one of the metrology data in the set of metrology data earlier obtained. The first metrology data is transformed into a second metrology data using the one or more of the determined essential variables.
摘要:
Drift in an optical metrology tool is compensated for by obtaining a first measured diffraction signal and a second measured diffraction signal of a first calibration structure mounted on the optical metrology tool. The first and second measured diffraction signals were measured using the optical metrology tool. The second measured diffraction signal was measured later in time than the first measured diffraction signal. A first drift function is generated based on the difference between the first and second measured diffraction signals. A third measured diffraction signal is obtained of a first structure formed on a first wafer using the optical metrology tool. A first adjusted diffraction signal is generated by adjusting the third measured diffraction signal using the first drift function.
摘要:
Optical metrology tools are matched by obtaining a first set of measured diffraction signals, which was measured using a first optical metrology tool, and a second set of measured diffraction signals, which was measured using a second optical metrology tool. A first spectra-shift offset is generated based on the difference between the first set of measured diffraction signals and the second set of measured diffraction signals. A first noise weighting function for the first optical metrology tool is generated based on measured diffraction signals measured using the first optical metrology tool. A first measured diffraction signal measured using the first optical metrology tool is obtained. A first adjusted diffraction signal is generated by adjusting the first measured diffraction signal using the first spectra-shift offset and the first noise weighting function.