摘要:
Certain aspects of the present disclosure relate to a method for compressed sensing (CS). The CS is a signal processing concept wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. In this disclosure, the CS framework is applied for sensor signal processing in order to support low power robust sensors and reliable communication in Body Area Networks (BANs) for healthcare and fitness applications.
摘要:
Certain aspects of the present disclosure relate to techniques for measuring body impedance based on baseband signal detection in analog domain. Proposed methods and apparatus are able to measure an impedance of human body based on sub-Nyquist sampling of signals. The proposed techniques can be particularly beneficial for reducing overall sensor power when an actuation signal generates electrical signals corresponding to vital signs in humans.
摘要:
Certain aspects of the present disclosure relate to a method for quantizing signals and reconstructing signals, and/or encoding or decoding data for storage or transmission. Points of a signal may be determined as local extrema or points where an absolute rise of the signal is greater than a threshold. The tread and value of the points may be quantized, and certain of the quantizations may be discarded before the quantizations are transmitted. After being received, the signal may be reconstructed from the quantizations using an iterative process.
摘要:
Certain aspects of the present disclosure relate to a method for quantizing signals and reconstructing signals, and/or encoding or decoding data for storage or transmission. Points of a signal may be determined as local extrema or points where an absolute rise of the signal is greater than a threshold. The tread and value of the points may be quantized, and certain of the quantizations may be discarded before the quantizations are transmitted. After being received, the signal may be reconstructed from the quantizations using an iterative process.
摘要:
Certain aspects of the present disclosure relate to a technique for mitigating artifacts of biophysical signals in a body area network. Information from multiple sensors (including motion information of the body) can be employed in mitigating the artifacts. The biophysical signals in the body area network can be compressively sensed.
摘要:
Certain aspects of the present disclosure relate to a technique for mitigating artifacts of biophysical signals in a body area network. Information from multiple sensors (including motion information of the body) can be employed in mitigating the artifacts. The biophysical signals in the body area network can be compressively sensed.
摘要:
Certain aspects of the present disclosure relate to a method for estimating a blood pressure using both a pulse arrival time (PAT) and an instantaneous heart rate (HR). The PAT can be measured as the delay between QRS peaks in an electrocardiogram (ECG) signal and corresponding points in a photoplethysmogram (PPG) waveform. Parameters of the estimation model can be determined through an initial training. Then, the model parameters can be recalibrated in constant intervals using the recursive least square (RLS) approach combined with a smooth bias fixing. The proposed estimation algorithm is applied on a multi-parameter intelligent monitoring for intensive care (MIMIC) database, and the results are compared with estimation methods that use PAT only or HR only. The proposed estimation algorithm meets, on average, the Association for the Advancement of Medical Instrumentation (AAMI) requirements and outperforms other methods from the prior art. It is also shown in the present disclosure that the proposed estimation algorithm is robust to unknown skew between the ECG and PPG signals.
摘要:
Methods and apparatus for audio and speech processing including generating a plurality of frames, each of the frames comprising a plurality of transform coefficients, and allocating bits to the transform coefficients in each of the frames such that at least two of the transform coefficients in the same frame have different bit allocations and the total number of the bits allocated to the transform coefficients in at least two of the frames is equal.
摘要:
Certain aspects of the present disclosure relate to techniques for denoising of physiological signals. A signal (e.g., physiological signal) comprising at least two signal channels can be decomposed (e.g., using independent component analysis (ICA)) into at least two independent components. Then, independent component (IC) denoising can be applied to estimate which of the at least two independent components belong to a signal space and which of the at least two independent components belong to a noise space using a statistical metric associated with the at least two signal channels. A de-noised version of the signal can be generated by preserving in the signal only one or more independent components of the at least two independent components belonging to the signal space.
摘要:
The rate at which data is provided by one device and the rate at which that data is processed by another device may differ. For example, a transmitting device may transmit data according to a transmit clock while a receiving device that receives the transmitted data may process the data according to a receive clock. If there is a timing mismatch between the transmit and receive clocks, the receiving device may receive data faster or slower than it processes the data. In such a case, there may be errors relating to the processing of the received data. To address timing mismatches such as this, the receiving device may delete data from or insert data into the received data. In conjunction with these operations, the receiving device may modify the received data at or near the insertion point or the deletion point in a manner that mitigates any adverse effect the insertion or deletion may have on a resulting output signal.