摘要:
An electronic device has an orientation sensing system for determining an orientation of the device. The system includes a magnetometer and an accelerometer. The system further has a calibration device configured to calibrate the sensing system for operational use. The accelerometer supplies measurements used to constrain a range of possible directions of the external magnetic field to be determined. The calibration device numerically solves a set of equations and is equally usable for a 2D or 3D magnetometer in combination with a 2D or 3D accelerometer.
摘要:
A magnetic field sensor circuit comprises a first magneto-resistive sensor (Rx) which senses a first magnetic field component in a first direction to supply a first sense signal (Vx). A first flipping coil (FC1) applies a first flipping magnetic field with a periodically changing polarity to the first magneto-resistive sensor (Rx) to cause the first sense signal (Vx) to have alternating different levels synchronized with the first flipping magnetic field. A second magneto -resistive sensor (Ry) senses a second magnetic field component in a second direction different than the first direction to supply a second sense signal (Vy). A second flipping coil (FC2) applies a second flipping magnetic field with a periodically changing polarity to the second magneto -resistive sensor (Ry) to cause the second sense signal (Vy) to have an alternating different levels synchronized with the second flipping magnetic field. The first flipping magnetic field and the second flipping magnetic field have a phase shift. A differential amplifier (AMP1) receives the first sense signal (Vx) and the second sense signal (Vy) to obtain a difference signal (Vd). A first synchronous demodulator (DEM1) receives the difference signal (Vd) and a first switching signal (Q1) being phase locked to the alternating different levels of the first sense signal (Vx) to supply a first output signal (Vox) indicating the first magnetic field component. A second synchronous demodulator (DEM2) receives the difference signal (Vd) and a second switching signal (Q2) being phase locked to the alternating different levels of the second sense signal (Vy) to supply a second output signal (Voy) indicating the second magnetic field component.
摘要:
An electronic device has an orientation sensing system for determining an orientation of the device. The system comprises a magnetometer and an accelero meter. The system further has calibration means to calibrate the sensing system for operational use. The accelerometer supplies measurements used to constrain a range of possible directions of the external magnetic field to be determined. The calibration means numerically solves a set of equations and is equally well useable for a 2D or 3D magnetometer in combination with a 2D or 3D accelerometer.
摘要:
A magnetic field sensor circuit comprises a first magneto-resistive sensor (Rx) which senses a first magnetic field component in a first direction to supply a first sense signal (Vx). A first flipping coil (FC1) applies a first flipping magnetic field with a periodically changing polarity to the first magneto-resistive sensor (Rx) to cause the first sense signal (Vx) to have alternating different levels synchronized with the first flipping magnetic field. A second magneto -resistive sensor (Ry) senses a second magnetic field component in a second direction different than the first direction to supply a second sense signal (Vy). A second flipping coil (FC2) applies a second flipping magnetic field with a periodically changing polarity to the second magneto -resistive sensor (Ry) to cause the second sense signal (Vy) to have an alternating different levels synchronized with the second flipping magnetic field. The first flipping magnetic field and the second flipping magnetic field have a phase shift. A differential amplifier (AMP1) receives the first sense signal (Vx) and the second sense signal (Vy) to obtain a difference signal (Vd). A first synchronous demodulator (DEM1) receives the difference signal (Vd) and a first switching signal (Q1) being phase locked to the alternating different levels of the first sense signal (Vx) to supply a first output signal (Vox) indicating the first magnetic field component. A second synchronous demodulator (DEM2) receives the difference signal (Vd) and a second switching signal (Q2) being phase locked to the alternating different levels of the second sense signal (Vy) to supply a second output signal (Voy) indicating the second magnetic field component.
摘要:
A respiratory monitor comprises: a first sensor (20, 70) configured to generate a respiration-related motion monitoring signal (72) indicative of respiration related motion; a second sensor (20, 22, 80, 82) configured to generate a sound monitoring signal (84) indicative of respiration-related sound; and a signals synthesizer (90) configured to synthesize a respiratory monitor signal (46) based on the respiration-related motion monitoring signal and the respiration-related sound monitoring signal. A sensor for use in respiratory monitoring comprises an accelerometer (30) and a magnetometer (32) together defining a unitary sensor (20) configured for attachment to a respiring subject (10) so as to move as a unit responsive to respiration related motion of the respiring subject.
摘要:
The invention relates to a motion determination apparatus for determining motion of a moving object, wherein the motion determination apparatus (1) comprises a multi-axial accelerometer (2) for being positioned at the moving object (4), wherein the multi-axial accelerometer (2) is adapted to generate accelerometer signals indicative of the acceleration along different spatial axes. The motion determination apparatus further comprises a motion signal generation unit (3) for generating a motion signal indicative of the motion of the object (4) by combining the accelerometer signals of different spatial axes. The combination of the accelerometer signals of different spatial axes yields a motion signal having a large signal-to-noise ratio, even if an axis is located close to a rotational axis of the movement.
摘要:
In order to eliminate the need of tiresome and complex calibration procedures for posture-detecting devices, means are provided for determining an orientation of a body-mounted or implanted device (1) relative to the body (2), the device (1) having an orientation detection unit, wherein an uncontrolled output of the orientation detection unit over a period of time together with one or more reference conditions defined in a body reference system (xb, yb, zb) are used for determining the relative orientation of the device and hence for calibration.
摘要:
A magnetic sensor device (300) for sensing magnetic particles (15), the magnetic sensor device (300) comprising a magnetic field generator unit (12) adapted for generating a magnetic field, an excitation signal source (302) adapted for supplying the magnetic field generator unit (12) with a static electric excitation signal, an excitation switch unit (303) adapted for switching between different modes of electrically coupling the excitation signal source (302) to the magnetic field generator unit (12), and a sensing unit (11) adapted for sensing a signal indicative of the presence of the magnetic particles (15) in the generated magnetic field.
摘要:
The invention relates to a magnetic sensor device comprising excitation wires (11, 13) for generating a magnetic excitation field and a magnetic sensor element, particularly a GMR sensor (12), for sensing magnetic fields generated by labeling particles in reaction to the excitation field. The magnetic excitation fields are generated with non-sinusoidal forms, particularly as square-waves, such that their spectral range comprises a plurality of frequency components. Magnetic particles with different magnetic response characteristics can then be differentiated according to their reactions to the different frequency components of the excitation fields. The magnetic excitation field and the sensing current driving the GMR sensor (12) are preferably generated with the help of ring modulators (22, 24). Moreover, ring modulators (27, 29) may be used for the demodulation of the sensor signal.
摘要:
In an embodiment, an oxygen sensor comprises a giant magnetoresistance device (10), and a magnetic field generator (14, 14a, 14b) arranged to generate a magnetic field (12, 12a, 12b) overlapping the giant magnetoresistance device and an examination region (20). A component (Bx) of the magnetic field detected by the giant magnetoresistance device is dependent upon an oxygen concentration in the examination region. In an embodiment, a chip (40) includes one or more electrically conductive traces (14a, 14b) disposed on or in the chip and a giant magnetoresistance device (10) disposed on or in the chip such that electrical current flowing in the trace or traces generates a magnetic field (12a, 12b) that overlaps the magnetic field sensor, said magnetic field being perturbed (Bx) by ambient oxygen (24) such that a signal output by the magnetic field sensor indicates ambient oxygen concentration.