摘要:
In a mobile control node system and method for a vehicle (630), the mobile control node (624) can interact, via a bi-directional radio link (642), with a transceiver processor unit (628) in the vehicle. The transceiver processor unit (628) is connected to a vehicle control system (120) and allows the mobile control node (624) to function as an input and output node on a vehicle control network (632), allowing remote control of the vehicle and providing functions such as remote or passive keyless entry. Additionally, the system provides a vehicle location function wherein the range and bearing between the mobile control node (624) and the vehicle (630) can he determined and displayed on the mobile control node (624). The range and bearing are calculated by determining the range between the mobile control node (624) and vehicle (630), preferably using a time of flight methodology, and by processing the travel distance of the mobile control node and compass data in order to triangulate the position of the vehicle (630) relative to the mobile control node (624).
摘要:
In a mobile control node system and method for a vehicle (630), the mobile control node (624) can interact, via a bi-directional radio link (642), with a transceiver processor unit (628) in the vehicle. The transceiver processor unit (628) is connected to a vehicle control system (120) and allows the mobile control node (624) to function as an input and output node on a vehicle control network (632), allowing remote control of the vehicle and providing functions such as remote or passive keyless entry. Additionally, the system provides a vehicle location function wherein the range and bearing between the mobile control node (624) and the vehicle (630) can be determined and displayed on the mobile control node (624). The range and bearing are calculated by determining the range between the mobile control node (624) and vehicle (630), preferably using a time of flight methodology, and by processing the travel distance of the mobile control node and compass data in order to triangulate the position of the vehicle (630) relative to the mobile control node (624).
摘要:
A ranging system includes a time of flight subsystem including circuitry incorporated in a mobile node and a base station for generating a TOF signal between the mobile node and the base station, measuring the time taken for transmission of the TOF signal, and generating a TOF distance signal based on the measured time. An accelerometer, mounted in the mobile node, generates an accelerometer signal. A distance filter generates the distance estimate. The filter is configured to (i) initialize the value of a distance estimate signal based on the TOF distance signal, (ii) detect a human step based on variances in the accelerometer signal, and (iii) change the value of the distance estimate signal by a predetermined quantum only upon detection of the human step, the change being positive or negative depending on a direction of the TOF distance signal relative to the distance estimate signal.
摘要:
A ranging system includes a time of flight subsystem including circuitry incorporated in a mobile node and a base station for generating a TOF signal between the mobile node and the base station, measuring the time taken for transmission of the TOF signal, and generating a TOF distance signal based on the measured time. An accelerometer, mounted in the mobile node, generates an accelerometer signal. A distance filter generates the distance estimate. The filter is configured to (i) initialize the value of a distance estimate signal based on the TOF distance signal, (ii) detect a human step based on variances in the accelerometer signal, and (iii) change the value of the distance estimate signal by a predetermined quantum only upon detection of the human step, the change being positive or negative depending on a direction of the TOF distance signal relative to the distance estimate signal.
摘要:
A remote vehicle control system having a base transceiver mounted in a vehicle and a mobile key fob. The base transceiver utilizes an omni-directional antenna to communicate wirelessly with the key fob via the IEEE 802.15.4 communication protocol. Additional antennas are mounted to the vehicle and are also tuned to communicate over the IEEE 802.15.4 bandwidth. The additional antennas have radiation patterns extending outwardly to various sides of the vehicle (e.g., driver, passenger and rear sides). The system provides remote control functions and enables passive keyless entry functions such as unlocking doors or trunk latches by detecting the presence of the key fob proximate to one or more sides of the vehicle based on the ability of the key fob to communicate over IEEE 802.15.4 via the additional antennas.
摘要:
A vehicle starting system for activating an ignition of a vehicle. The system includes a remote transmitting device operable to communicate a start signal in response to a user input, and a control at a vehicle that receives the start signal. The control processes images captured by at least one imaging device to determine if the images are indicative of the vehicle being parked in an enclosed environment. The control activates an ignition of the vehicle in response to the start signal and the image processing.