摘要:
Earth-boring rotary drill bits include bit bodies comprising a composite material including a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material. The bits further include a cutting structure disposed on a face of the bit body. In some embodiments, the bit bodies may include a plurality of regions having differing material compositions. For example, the bit bodies may include a first region comprising a plurality of hard phase regions or particles dispersed throughout a titanium or titanium-based alloy matrix material, and a second region comprising a titanium or a titanium-based alloy material. Methods for forming such drill bits include at least partially sintering a plurality of hard particles and a plurality of particles comprising titanium or a titanium-based alloy material to form a bit body comprising a particle-matrix composite material. A shank may be attached directly to the bit body.
摘要:
Rotary drill bits for drilling subterranean formations include a bit body and at least one cutting structure disposed on a face thereof. The bit body includes a crown region comprising a particle-matrix composite material that includes a plurality of boron carbide particles dispersed throughout an aluminum or aluminum-based alloy matrix material. In some embodiments, the matrix material may include a continuous solid solution phase and a discontinuous precipitate phase. Methods of manufacturing rotary drill bits for drilling subterranean formations include infiltrating a plurality of boron carbide particles with a molten aluminum or aluminum-based material. In additional methods, a green powder component is provided that includes a plurality of particles each comprising boron carbide and a plurality of particles each comprising aluminum or an aluminum-based alloy material. The green powder component is at least partially sintered to provide a bit body, and a shank is attached to the bit body.
摘要:
The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.
摘要:
The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.
摘要:
The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the Ceracon™ process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
摘要:
The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the Ceracon™ process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
摘要:
The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.
摘要:
A clamping band for clamping a resilient gasket against an opening within a wall to provide a fluid-tight seal therebetween. The clamping band is generally circular-shaped and has an elongated slot extending inwardly from one free end of the clamping band and cooperates with an elongated projection of reduced cross section as compared with the nominal cross section of the clamping band and which is provided at the opposite end of the band. The projection is inserted into the slot, the clamping band is placed against the gasket arranged within the aforesaid opening and the gasket is expanded a predetermined amount by an hydraulic expander to exert the desired clamping pressure upon the resilient gasket. One surface of the projection is provided with a series of teeth. An opening communicating with said slot receives a wedge fitted into said opening and having several teeth along one surface thereof, which teeth conform to the teeth of said projection. Insertion of the wedge inter-engages the teeth of the projection and the wedge locking the clamping band in the desired position with the requisite amount of the clamping pressure. The wedge is preferably tapped into the locking position and is also removable for whatever purpose and is reusable. The teeth may be replaced with openings in opposite sidewalls of the slot and in the projection. The insert is replaced by drive pins inserted into cooperating openings in the projection and sidewalls.
摘要:
A gasket assembly includes a one-piece gasket that has a mounting end, for mounting in an opening of an associated enclosure body, and a pipe engaging end, for receiving an associated pipe. An intermediate section is located between the mounting end and the pipe engaging end. A clamp assembly is used on the pipe engaging end of the gasket. The clamp assembly is looped to assume an annular configuration. A retaining member, of one piece with the gasket, extends from a wall of the gasket, for retaining the clamp assembly to the gasket in a transport position.
摘要:
Method and apparatus for providing inserts, such as lift inserts and step inserts, in cast members. The inserts have breakaway tabs mounted in receiving slots in either a reusable holder or disk-shaped member. The assembled insert and holder are inserted through a collar on the outer jacket of a mold assembly and a locking pin passes through cooperating openings in the holder and collar to retain the lift insert/holder in place during the casting operation. The disk-shaped member is fixed to a jacket of the mold assembly. The breakaway tabs break away from the insert when the cast member is separated from the mold assembly, the breakaway tabs being discarded and the holder (disk-shaped member) being reusable many times for subsequent casting operations. The slots, in one embodiment, have a locking shoulder to lock the tabs in their slots. In another embodiment, a cam surface on the tabs lock the tabs in the slots. In another embodiment, one slot and one tab differ in radial or circumferential length from the other tabs and slots to permit alignment between the slots and tabs in only one position to assure that the tabs are properly mounted in the holder.