摘要:
High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
摘要:
Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
摘要:
A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m2/g to about 200 m2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm2 to about 3.5 mg/cm2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.
摘要:
High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
摘要:
A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m2/g to about 200 m2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm2 to about 3.5 mg/cm2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.
摘要:
Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
摘要:
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
摘要:
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
摘要:
A supercapacitor comprising a cathode, an anode, a first single-walled carbon nanotube (SWNT) film electrode adjacent the cathode, a second SWNT film electrode adjacent the anode, and separator disposed between the first and second electrodes. The SWNT film electrodes may be manufactured by a non-filtration process comprising depositing the SWNT film on a foil via CVD; separating the SWNT film from the foil; heating the SWNT film; treating the SWNT film with an acid solution; washing the SWNT film; and excising the electrodes from the SWNT film.
摘要:
A supercapacitor comprising a cathode, an anode, a first single-walled carbon nanotube (SWNT) film electrode adjacent the cathode, a second SWNT film electrode adjacent the anode, and separator disposed between the first and second electrodes. The SWNT film electrodes may be manufactured by a non-filtration process comprising depositing the SWNT film on a foil via CVD; separating the SWNT film from the foil; heating the SWNT film; treating the SWNT film with an acid solution; washing the SWNT film; and excising the electrodes from the SWNT film.