摘要:
The present invention relates to the use of a compound for plant growth regulation, preferably by application of the compound to plants, to the seeds from which they grow or to the locus in which they grow, in an effective plant growth regulating, preferably non-phytotoxic amount, which compound is a 3,4-disubstituted maleimide derivative of formula (I) or an agriculturally acceptable salt thereof, wherein: X is aryl or heteroaryl which groups are unsubstituted or substituted; Y is NH or a covalent bond; and Z is aryl or heteroaryl which groups are unsubstituted or substituted and a method for treatment of plants with such compounds in order to induce growth regulating responses.
摘要:
The present invention relates to a new class of plant growth regulators. In particular, the invention relates to fused azepinone derivative of general formula (I) or an agriculturally acceptable salt thereof wherein X is CO2R2 or H; Y is OH; NHNR3R4, NHNHC(═Z)NR5R6 or NHNHC(═Z)CR7R8R9; or X and Y together with the two carbon atoms to which they are attached form a ring of formula (A) and a method for treatment of plants with such compounds in order to induce growth regulating responses.
摘要翻译:本发明涉及一类新的植物生长调节剂。 特别地,本发明涉及通式(I)的稠合氮杂酮衍生物或其农业上可接受的盐,其中X为CO 2 R 2或H; Y是OH; NHNR 3 R 4,NHNHC(= Z)NR 5 R 6或NHNHC(= Z)CR 7 R 8 R 9; 或X和Y与它们所连接的两个碳原子一起形成式(A)的环,以及用这些化合物处理植物以诱导生长调节反应的方法。
摘要:
The present invention relates to an ALS inhibitor herbicide tolerant B. napus plant, progeny and parts thereof comprising a non-transgenic mutation of an endogenous acetolactate synthase I gene and a non-transgenic mutation of an endogenous acetolactate synthase III gene.
摘要:
The present invention relates to an ALS inhibitor herbicide tolerant B. napus plant, progeny and parts thereof comprising a non-transgenic mutation of an endogenous acetolactate synthase I gene and a non-transgenic mutation of an endogenous acetolactate synthase III gene.
摘要:
Provided is a method for producing transgenic monocotyledonous plants, plant cells, plant parts, seeds, and reproduction material with modified 5-aminolevulinic acid biosynthesis. This is achieved by stably integrating one or several nucleic acid molecules coding for a protein with a 5-aminolevulinic acid synthase function (ALAS) isolated from the alpha group of purple bacteria, an active fragment thereof or an antisense or complementary sequence thereof, into tie plant genome in stable form. This method can also be used to control undesired vegetation Also provided is a method for producing transgenic plants or plant cells whose glutamate-1-semialdehyde transferase (GSAAT) expression is suppressed or inhibited by stable integration of at least one nucleic acid molecule encoding an ALAS isolated from the alpha group of purple bacteria into the plant plastome by plastid transformation.
摘要:
The invention is drawn to plant cell transformation with a nucleic acid construct comprising a prokaryotic ammonium-specific asparagine synthetase, type A, coding sequence, operably linked to a chloroplast transit peptide-encoding sequence, wherein said plant cells also contain a nucleic acid construct comprising a chloroplastic glutamine synthetase coding sequence in antisense orientation. Plant cells containing both nucleic acid constructs, and plants regenerated therefrom, exhibit improved growth characteristics.
摘要:
Protoplasts which regenerate reproducibly in a short time to normal, fertile plants can be regenerated from an auxin-autotrophic genotype of Zea mays (L.). Starting from immature embryos on hormone-free media, an auxin-autotrophic, embryogenic callus is formed on the shoot basis of the seedlings, which callus retains its embryogenic potential over a substantial period of time when subcultured on hormone-free medium. In addition to fully-developed embryos, adventitious embryos are also formed under suitable culture conditions (6-9% of sucrose in the medium). When the sucrose content is reduced to 2-3% and 2,4-dichlorophenoxyacetic acid is added, soft, granular calli are formed which consist of embryogenic cell aggregates (type II callus). After subculturing the type II callus in the form of a cell suspension culture, totipotent protoplasts can be isolated. From these protoplasts, the maize plants according to the invention are regenerated.