Abstract:
The present invention provides novel solvated forms of darunavir and processes for their preparation. The present invention also provides novel processes for the preparation of darunavir amorphous form and pharmaceutical compositions comprising it. Thus, for example, darunavir 2-methyl-2-butanol solvate was dissolved in methylene dichloride, distilled under vacuum at 45° C. to obtain a residue, cyclohexane was added to the residue and stirred for 30 hours at 20 to 25° C., and the separated solid was filtered, washed with cyclohexane and dried under vacuum at 50° C. for 12 hours to yield darunavir amorphous form.
Abstract:
The present invention relates to a novel amorphous Form of lopinavir and ritonavir mixture in the ratio of 3.8:1.2 to 4.2:0.8, process for its preparation and pharmaceutical compositions comprising it.
Abstract:
The present invention provides novel solvated forms of darunavir and processes for their preparation. The present invention also provides novel processes for the preparation of darunavir amorphous form and pharmaceutical compositions comprising it. Thus, for example, darunavir 2-methyl-2-butanol solvate was dissolved in methylene dichloride, distilled under vacuum at 45° C. to obtain a residue, cyclohexane was added to the residue and stirred for 30 hours at 20 to 25° C., and the separated solid was filtered, washed with cyclohexane and dried under vacuum at 50° C. for 12 hours to yield darunavir amorphous form.
Abstract:
The present invention provides a solid dispersion of rufinamide in combination with a pharmaceutically acceptable carrier, process for its preparation and pharmaceutical compositions comprising it.
Abstract:
The present invention provides a solid dispersion of rufinamide in combination with a pharmaceutically acceptable carrier, process for its preparation and pharmaceutical compositions comprising it.
Abstract:
The present invention provides novel crystalline hydrochloride salt of darunavir, process for its preparation and to pharmaceutical composition comprising it. The present invention also provides novel process for preparation of darunavir amorphous form and pharmaceutical composition comprising it.
Abstract:
The present invention provides a novel amorphous solid dispersion of elvitegravir in combination with a pharmaceutically acceptable carrier, process for its preparation and pharmaceutical compositions comprising it. In a preferred embodiment the process for the preparation of amorphous solid dispersion of elvitegravir in combination with a pharmaceutically acceptable carrier comprises: preparing a solution comprising a mixture of elvitegravir and one or more pharmaceutically acceptable carriers selected from copovidone, ethyl cellulose, hydroxypropyl methylcellulose, polyethylene glycol, span 20 or soluplus in a solvent; and removing the solvent from the solution obtained; adding hydrocarbon solvent to the residual solid; and isolating amorphous solid dispersion of elvitegravir in combination with a pharmaceutically acceptable carrier.
Abstract:
Crystalline Forms of fosamprenavir calcium are disclosed, processes for its preparation and pharmaceutical compositions therefrom. The process for the preparation of fosamprenavir calcium crystalline Form H1, comprises: a) suspending fosamprenavir calcium in a nitrile solvent; b) heating the suspension obtained in step (a) at reflux; c) optionally adding a solvent to the reaction mass obtained in step (b); d) cooling the reaction mass at below 35 degrees Centigrade; and e) isolating fosamprenavir calcium crystalline Form H1. Another process for the preparation of substantially pure amorphous fosamprenavir calcium, which comprises: a) dissolving fosamprenavir calcium in an ester solvent; b) a portion of solvent from the solution obtained in step (a) until at least separation of fosamprenavir calcium as solid occurs; and c) isolating substantially pure amorphous fosamprenavir calcium. The pharmaceutical composition may comprse substantially pure amorphous fosamprenavir calcium and pharmaceutically acceptable excipients.