摘要:
The invention provides a gas turbine combined cycle structured such that an intermediate cooling device for cooling a compression air discharged from a low pressure compressor, so as to reduce a load of a high pressure compressor, is provided. The gas turbine combined cycle in accordance with the invention is structured such as to branch water from a condenser to a steam generating device for generating steam. Exhaust gas discharged from a steam turbine is condensed to water. Compression air discharged from a low pressure compressor is cooled by being supplied to an intermediate cooling device, and is then supplied to a high pressure compressor. Steam which heats and operates the steam turbine is generated by the heat recovered by the cooling of the compression air in the intermediate cooling device. Accordingly, there can be obtained a gas turbine combined cycle having the advantage of the conventional intermediate cooling type gas turbine combined cycle, but exhibiting an improved combined efficiency.
摘要:
A combined cycle plant includes a heat exchanger (3) for recovering heat into compressed air or gas turbine fuel to be supplied into gas turbine (01). The plant is arranged such that steam is used as high temperature side working medium of the heat exchanger (3). Thus, the heating medium supply passage can be made of ordinary steam piping and piping cost is reduced. Also, gas turbine exhaust gas is led directly into a waste heat recovery boiler (02), so that gas turbine efficiency and combined efficiency can be enhanced and plant manufacturing cost is reduced.
摘要:
A gas turbine plant, wherein a plurality of first gas turbines positioned coaxially with compressors and a second gas turbine positioned coaxially with a generator are rotated by a coolant heated by heat energy provided by the fission of a coated particle fuel. A flow in a bypass passage is controlled by controlling the opening of bypass valves of (n−1) in quantity which bypass the first gas turbines on up to (n−1) shafts in starting. Accordingly, the rotational speeds of the first gas turbines on up to (n) shafts are increased to a rated rotational speed in order starting at the initial stage on the upstream side of a high temperature gas-cooled reactor toward the lower stage for each shaft.
摘要:
A gas turbine plant, wherein a first gas turbine positioned coaxially with a compressor and a second gas turbine positioned coaxially with a generator are rotated by a coolant heated by heat energy provided by the fission of a coated particle fuel. The rotational speed of the first gas turbine is controlled by controlling a flow in the bypass passage of the second gas turbine.
摘要:
A gas turbine plant, wherein a plurality of first gas turbines positioned coaxially with compressors and a second gas turbine positioned coaxially with a generator are rotated by a coolant heated by heat energy provided by the fission of a coated particle fuel. A flow in a bypass passage is controlled by controlling the opening of bypass valves of (n−1) in quantity which bypass the first gas turbines on up to (n−1) shafts in starting. Accordingly, the rotational speeds of the first gas turbines on up to (n) shafts are increased to a rated rotational speed in order starting at the initial stage on the upstream side of a high temperature gas-cooled reactor toward the lower stage for each shaft.
摘要:
A gas turbine plant, wherein a first gas turbine positioned coaxially with a compressor and a second gas turbine positioned coaxially with a generator are rotated by a coolant heated by heat energy provided by the fission of a coated particle fuel. The rotational speed of the first gas turbine is controlled by controlling a flow in the bypass passage of the second gas turbine.
摘要:
A gas turbine combustor has homogenous air inflow by elimination of turbulence from the air, reducing combustion instability. A combustor 3 has, at its center, a pilot nozzle 8 and eight main nozzles 7 around the pilot nozzle 8. The air flows in around the individual nozzles 7 and 8 to the leading end of the combustor 3 so that it is used for combustion. An annular flow ring 20, having a semicirculat section, is disposed at the upstream end portion of a combustion cylinder 10, and a porous plate 50 and a surrounding rib 51 are disposed downstream of the flow ring 20. The air inflow is smoothly turned at first by the flow ring 20 and then straightened by the porous plate 50 so that the air flows without any disturbance around the individual nozzles 7 and 8 to the leading end, thereby reducing combustion instability.
摘要:
Disclosed herein is a gas turbine system which is supplied with a low-pressure industrial by-product gas as a fuel and equipped coaxially with a gas compressor for compressing the fuel gas, the system providing a bypass pipeline for returning the gas in a high-pressure gas piping on the discharge side of the fuel gas compressor into a low-pressure gas piping on the inlet side of the compressor through a pressure reducing valve and a cooler, and an emergency gas pressure stabilizer having high responsive characteristics, the stabilizer being provided in the bypass pipeline on the outlet side of the cooler, whereby the high-pressure fuel gas on the discharge side of the fuel gas compressor can be returned safely into a low-pressure industrial by-product gas pipeline.
摘要:
A turbine cooling apparatus comprising a turbine disk having a plurality of moving blades, a torque tube coupled coaxially to one surface side of the turbine disk and having a thick stepped inner wall portion in the central portion thereof, an air separator fitted on the torque tube with the inner surface thereof in contact with the outer surface of the torque tube so that a passage through which cooling air is supplied to the moving blades via the turbine disk is defined between the air separator and the torque tube, and a torque tube cooling hollow portion provided along and in the vicinity of the outer surface of the thick stepped wall portion of the torque tube.
摘要:
A gasifying agent supply path A from an axial flow compressor 21 which boosts pressure of a gasifying agent to a gasifying furnace 2 is branched, and a gasifying agent bypass path D having an escaping pressure adjusting valve 23 is provided. The flow quantity or pressure of the gasifying agent supplied to the gasifying furnace 2 from the gasifying agent supply path A can be adjusted according to the degree of opening of the adjusting valve 23 disposed in the gasifying agent bypass path D, whereby providing a control valve in the gasifying agent supply path A is no longer necessary. Thus, pressure loss at the gasifying agent supply path A can be suppressed, and the discharge pressure of the axial flow compressor 21 can be greatly reduced.