摘要:
The present invention provides an electrode comprising on an electrode substrate a catalytic layer comprising catalytically active particles and a solid polymer comprising a component represented by Structural Formula (1) below: wherein R1, R2, R3, and R4 are the same or different, and independently represent a hydrogen atom or C1-8 univalent hydrocarbon group, and m and n are independently an integer from 2 to 4; a fuel cell comprising the catalytic layer; and a fuel cell for bioimplantation whose surface is coated with the solid polymer.
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.
摘要:
Methods of effectively utilizing yeast-containing waste products generated after yeast use can be applied to absorbing agents, drying agents, soil conditioners, catalysts, and other common applications in the same manner as to charcoal-based materials of other materials by carbonizing the waste product, but a new search was needed in order to broaden the industrial utilization of these products. By supporting a particulate or powdered charcoal-based material obtained by carbonizing a yeast-containing material on an electrically conductive gas-permeable base, an electrode can be obtained that is capable of the electrochemical reduction of oxygen. The present charcoal-based material can provide new applications that have not been hitherto proposed, in the sense that oxygen can be electrochemically reduced smoothly and at a small overvoltage (resistance), and a large electromotive force can be obtained, by placing the charcoal-based material at the intersection of the ion path and the oxygen path.
摘要:
The present invention is usable in oxygen electrodes and air electrodes for air cells, fuel cells, electrochemical sensors and like electrochemical devices. The present invention provides a very stable oxygen-reducing electrode that can achieve electrochemical reduction of oxygen at a noble potential. The oxygen-reducing electrode of the present invention contains a cobalt tetrapyrazinoporphyrazine derivative represented by the following Structural Formula (1) as a catalytic component.
摘要:
The present invention is usable in oxygen electrodes and air electrodes for air cells, fuel cells, electrochemical sensors and like electrochemical devices. The present invention provides a very stable oxygen-reducing electrode that can achieve electrochemical reduction of oxygen at a noble potential. The oxygen-reducing electrode of the present invention contains a cobalt tetrapyrazinoporphyrazine derivative represented by the following Structural Formula (1) as a catalytic component
摘要:
A positive electrode, a negative electrode, and an electrolyte intervening between the positive electrode and the negative electrode are employed, and a molecule capable of being excited due to absorption of light and electrochemically oxidizing carbohydrate is provided at at least either the negative electrode or the electrolyte, with production of electromotive force occurring between the positive electrode and the negative electrode as a result of supply of carbohydrate while the molecule is irradiated with light and oxidization of carbohydrate by the molecule at the negative electrode. This method makes it possible for the chemical energy which carbohydrates possess to be directly utilized as electrical energy.
摘要:
For utilizing the chemical energy of a sugar directly as electric energy, electrolytic oxidation of a sugar on the negative electrode associated with cleavage of a carbon-carbon bond thereof is employed, thereby generating an electromotive force between the positive electrode and the negative electrode having an electrolyte therebetween. For an efficient oxidation of a sugar, it is effective for the negative electrode to have a component capable of forming a coordination compound with a sugar via a hydroxyl group thereof. Such a component may comprise a metal element capable of forming an amphoteric hydroxide. Use of an oxygen electrode as the positive electrode gives a battery capable of efficiently converting the chemical energy of a sugar into electric energy.
摘要:
To provide a composite electrode, which does not lose large capacity and high energy density of sulfur and proceeds oxidation-reduction reaction rapidly even at room temperature. There is disclosed in the specification that a composite electrode comprising a composition containing an organic sulfide compound having at least a thiol or thiolate group in the molecule, polyaniline, and sulfur.
摘要:
An electrode of the present invention comprises a complex of at least one organic disulfide compound and at least one copper ion. The electrode maintains a high charging and discharging efficiency and has favorable charge and discharge cycle characteristic without losing a high energy density that is characteristic of the organic disulfide compound.