摘要:
A nematic liquid crystal composition of the present invention includes at least 20% by weight of one, or two or more compounds selected from compound group A; and 5 to 50% by weight of one, or two or more compounds selected from compound group B, wherein the relative proportions of the above-mentioned compounds used in the nematic liquid crystal composition is determined to simultaneously obtain the specific physical characteristics for the composition, and an anchoring breaking voltage Uλ/4 is less than or equal to 25 V when the product (Δn·d) of the refractive index anisotropy (Δn) at 20° C. and the thickness (d) is 140 nm and the liquid crystal composition is confined between two substrates for a bistable nematic liquid crystal display in which at least one of the substrates have a weak zenithal anchoring force.
摘要:
A nematic liquid crystal composition of the present invention includes at least 20% by weight of one, or two or more compounds selected from compound group A; and 5 to 50% by weight of one, or two or more compounds selected from compound group B, wherein the relative proportions of the above-mentioned compounds used in the nematic liquid crystal composition is determined to simultaneously obtain the specific physical characteristics for the composition, and an anchoring breaking voltage Uλ/4 is less than or equal to 25 V when the product (Δn·d) of the refractive index anisotropy (Δn) at 20° C. and the thickness (d) is 140 nm and the liquid crystal composition is confined between two substrates for a bistable nematic liquid crystal display in which at least one of the substrates have a weak zenithal anchoring force.
摘要:
The present invention provides a nematic liquid crystal composition suitable for a bistable nematic liquid crystal display. A bistable nematic liquid crystal display having a wide nematic phase temperature range and operating temperature range can be obtained by using a nematic liquid crystal composition comprising at least 20% by weight of a specific liquid crystal compound (A) having a polar group and 5 to 50% by weight of a specific liquid crystal compound (B) not having a polar group, along with comprising, in the compound (B), at least 3% by weight of a specific liquid crystal compound having a alkenyl group.
摘要:
The present invention provides a nematic liquid crystal composition suitable for a bistable nematic liquid crystal display. A bistable nematic liquid crystal display having a wide nematic phase temperature range and operating temperature range can be obtained by using a nematic liquid crystal composition comprising at least 20% by weight of a specific liquid crystal compound (A) having a polar group and 5 to 50% by weight of a specific liquid crystal compound (B) not having a polar group, along with comprising, in the compound (B), at least 3% by weight of a specific liquid crystal compound having a alkenyl group.
摘要:
A method of increasing helical twisting power (HTP) in an optically active compound used in a liquid crystal material is provided. An optically active compound which exhibits a large HTP value is also provided. Furthermore, a liquid crystal composition which exhibits a high upper temperature limit of the liquid crystal after the addition of the optically active compound, and a liquid crystal display device using the same are provided. In a method, an HTP of a compound having a partial structure represented by formula (A), which has an asymmetric carbon atom, is increased by replacing the partial structure represented by formula (A) by a partial structure represented by formula (B) (wherein * represents the position of an asymmetric carbon atom, Y1 represents a substituent such as an alkyl group and a halogen). A compound is represented by formula (I):
摘要:
A chiral nematic liquid crystal composition has minimal temperature dependency of the natural pitch and temperature dependency of the wavelength selective reflection and low temperature storage stability thereof is excellent. A chiral nematic liquid crystal composition with a broad liquid crystal temperature range is used in a bistable liquid crystal display element, and a bistable liquid crystal display element comprising the liquid crystal composition. The chiral nematic liquid crystal composition comprises optically active compounds represented by general formula (I-a) and general formula (II-a): R2P1-L1SP2-L2-P3—R3 (II-a) wherein the general formula (II-a) has the same helical twisting direction as the general formula (I-a), and shows a positive temperature dependency for the natural pitch, and a HTP value of at least 3. A bistable liquid crystal display element comprises the liquid crystal composition.
摘要:
Etching is performed on an insulating layer 23 and a conductive layer 32 with a photoresist 41 as the mask, to form an opening 51 in the conductive layer 32. After removing the photoresist 41, another insulating layer 24 is formed all over, which is etched back so as to expose a surface of a conductive layer 31, to thereby cover the inner wall of the opening 51. Then etching is performed on the conductive layer 31 with the latter insulating layer 24 as the mask, so as to form another opening 52 in the conductive layer 31. Then still another insulating layer 25 is formed all over, which is then etched back so as to expose a surface of the conductive layer 32, to thereby fill the opening 52 with the last formed insulating layer 25.
摘要:
Provided are a method of manufacturing a semiconductor, a nonvolatile semiconductor memory device and a method of manufacturing the same, wherein: the memory device has a plurality of memory cells; a buried diffusion layer serves as a signal line; and, a buried diffusion layer disposed adjacent to each of opposite end portions of a lower floating gate is free from variations in width resulted from misalignment occurring in an optical aligner. In the memory device, for example: the floating gate is formed in an active region of a P-type semiconductor substrate through a gate oxide film; an N-type drain region and an N-type source region are formed in opposite end portions of the floating gate; and, a pair of device isolation shielding electrode extends in parallel with the floating gate outside both the drain region and the source region to cover adjacent ones of the memory cells.
摘要:
A method of fabricating an MOS semiconductor device having the improved current-flowing characteristics with ease is disclosed. The method is featured as follows. First, a gate electrode covered by an insulator is formed on a gage insulating film on a semiconductor substrate, portions of the gate insulating film, above source and drain formation areas are removed and polycrystalline silicon layer doped with an impurity of the opposite type so that of the semiconductor substrate is selectively formed on the source and drain formation regions. Then, the impurity of the polycrystalline silicon is thermally diffused into the source and drain and formation region thereby to form shallow source and drain regions. Then, source and drain electrodes contacting with parts of the polycrystalline silicon.
摘要:
Etching is performed on an insulating layer 23 and a conductive layer 32 with a photoresist 41 as the mask, to form an opening 51 in the conductive layer 32. After removing the photoresist 41, another insulating layer 24 is formed all over, which is etched back so as to expose a surface of a conductive layer 31, to thereby cover the inner wall of the opening 51. Then etching is performed on the conductive layer 31 with the latter insulating layer 24 as the mask, so as to form another opening 52 in the conductive layer 31. Then still another insulating layer 25 is formed all over, which is then etched back so as to expose a surface of the conductive layer 32, to thereby fill the opening 52 with the last formed insulating layer 25.