Abstract:
An insulation composition that comprises at least one nitrile butadiene rubber (“NBR”) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (“PBO”) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.
Abstract:
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
Abstract:
An insulation material comprising a low-density EPDM polymer, at least one flame-retardant, and an organic filler. The insulation material is used in an insulation layer of a rocket motor. The organic filler is a polymeric, organic filler such as polyvinyl chloride. A rocket motor comprising an insulation material is also disclosed. The insulation material comprises a low-density EPDM polymer, at least one flame-retardant, and a polymeric, organic filler and is applied between an inner surface of a case of the rocket motor and a propellant. A method of insulating a rocket motor is also disclosed.
Abstract:
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
Abstract:
Precursors, insulative compositions, an article including the insulative compositions and a method for making the insulative compositions are disclosed. The insulative compositions are formed from a precursor composition that includes a nitride butadiene rubber, a nanoclay and a cure package including a sulfur-based curing agent. The insulative compositions may have a substantially reduced weight and compressive modulus in comparison to conventional insulative rubbers. Thus, the insulative compositions may provide improved ballistic properties in addition to reduced density and thickness. Precursor compositions for forming the insulative composition may have good flow characteristics. The insulative compositions may be used in a variety of applications, such as personnel body armor, ground vehicle armor and aircraft armor systems.
Abstract:
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
Abstract:
An insulation material comprising a low-density EPDM polymer, at least one flame-retardant, and an organic filler. The insulation material is used in an insulation layer of a rocket motor. The organic filler is a polymeric, organic filler such as polyvinyl chloride. A rocket motor comprising an insulation material is also disclosed. The insulation material comprises a low-density EPDM polymer, at least one flame-retardant, and a polymeric, organic filler and is applied between an inner surface of a case of the rocket motor and a propellant. A method of insulating a rocket motor is also disclosed.