Abstract:
Piece comprising a first metal part and a second part in organic matrix composite material, wherein the first part has a first connecting portion and the second part has a second connecting portion, the second connecting portion having at least one through-hole, the second connecting portion being totally or partially sandwiched between the first connecting portion and a metal fastening element, the fastening element being fastened on the first part both onto the first connecting portion via the through-hole of the second connecting portion and onto a portion other than the first connecting portion, whereby the first part and the second part are fastened to each other.
Abstract:
A rocket motor has an energetic material between solid fuel (propellent) and a casing that surrounds the solid fuel. The energetic material is configured to be burned along with the solid fuel during normal operation of the rocket motor to produce thrust. The energetic material can also be detonated to cause rupture of the casing. The detonation may be initiated as part of a flight termination process. The detonation may also be initiated as a part of process to prevent as a higher-order reaction, such as in reaction to heating from a fire or other cause. The energetic material may be arranged to function as part of a shaped charge, able to split the casing when detonated. By being located inside the casing, the energetic material does not adversely affect aerodynamics of the flight vehicle of which the rocket motor is a part, such as a missile.
Abstract:
The invention relates to a method for assembling a first metal part with a second part made of an organic matrix composite material, the first part having a first connecting portion and the second part having a second connecting portion, the method comprising the steps of:
causing the first connecting portion and the second connecting portion to overlap, a through-hole of the second connecting portion opening onto the first connecting portion, forming a protective layer on the side wall of the through-hole, forming a seal between the protective layer and the first connecting portion, and forming, by additive manufacturing using cold gas spray deposition of metal powder, a fastening element which extends into the through-hole, is fastened to the first connecting portion and encloses the second connecting portion.
Abstract:
Apparatus, methods and computer programs are provided. In one example, an apparatus is a rocket motor, comprising: a casing having a length dimension, a width dimension and a depth dimension, wherein the length dimension is greater than the width dimension and greater than the depth dimension; and propellant, located inside the casing, arranged to generate a force in a direction that is substantially perpendicular to the length dimension of the casing.
Abstract:
The present disclosure relates to propellant grain configuration in solid rocket motors. In one embodiment, the propellant grain is a case-bonded, forward-swept, deep finocyl grain offering significant flexibility in tailoring burn surface area regression profiles to meet different performance requirements even while allowing for high propellant volumetric loading densities. The grain comprises of two or more longitudinal fin cavities with forward swept leading edges, circular-patterned about an axial cavity.
Abstract:
A precursor formulation of a liner comprising a polymer and at least two curatives. One of the at least two curatives comprises a more reactive curative and the other of the at least two curatives comprises a less reactive curative. The more reactive curative is formulated to crosslink the polymer. A method of lining a rocket motor is also disclosed, as is a rocket motor including the liner.
Abstract:
Apparatus, methods and computer programs are provided. In one example, an apparatus is a rocket motor, comprising: a casing having a length dimension, a width dimension and a depth dimension, wherein the length dimension is greater than the width dimension and greater than the depth dimension; and propellant, located inside the casing, arranged to generate a force in a direction that is substantially perpendicular to the length dimension of the casing.
Abstract:
A precursor formulation of a liner comprising a polymer and at least two curatives. One of the at least two curatives comprises a more reactive curative and the other of the at least two curatives comprises a less reactive curative. The more reactive curative is formulated to crosslink the polymer. A method of lining a rocket motor is also disclosed, as is a rocket motor including the liner.
Abstract:
An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.
Abstract:
There is disclosed a solid fuel rocket motor which may include a case and a nozzle coupled to the case. A plurality of fuel pellets may be disposed within the case. An igniter may be disposed to ignite at least a portion of the fuel pellets. A pellet retainer may be positioned within the case to retain the plurality of fuel pellets within the case. The pellet retainer may be perforated to allow exhaust gases to flow from the ignited fuel pellets to the nozzle while preventing unburned fuel pellets from being expelled through the nozzle.