摘要:
An optical fiber path joint member according to the present invention includes a main path having an inlet and an outlet at respective ends thereof; and at least one joint path joining to the main path in one direction at an angle of equal to or less than 45.degree.. A method of blowing an optical fiber is comprised of the step of blowing an optical fiber into a pipe through the optical fiber path joint member according to the present invention.
摘要:
[Summary] [Problem] To provide an optical cable connecting closure and optical interconnection system which can easily respond to changes in required connection functions if any.[Solving Means] An optical cable connecting closure 118 has a case 121, while a plurality of connecting modules 123 are arranged (stored) so as to be erected with respect to the bottom face of a closure main body 119 along the width direction in a module storing section 122 of the case 121. The connecting module 123 has a rectangular parallelepiped board-like module main body 127, while a plurality of MT connectors 128, 129 are attached in a vertical row to one end face of the module main body 127. In the module main body 127, an optical connecting section 130 for connecting the MT connectors 128, 129 to each other is arranged. The module storing section 122 can store a different kind of connecting module having a connecting configuration (function) different from that of the connecting module 123.
摘要:
[Problem] To provide an optical cable connecting closure and optical interconnection system which can easily respond to changes in required connection functions if any.[Solving Means] An optical cable connecting closure 118 has a case 121, while a plurality of connecting modules 123 are arranged (stored) so as to be erected with respect to the bottom face of a closure main body 119 along the width direction in a module storing section 122 of the case 121. The connecting module 123 has a rectangular parallelepiped board-like module main body 127, while a plurality of MT connectors 128, 129 are attached in a vertical row to one end face of the module main body 127. In the module main body 127, an optical connecting section 130 for connecting the MT connectors 128, 129 to each other is arranged. The module storing section 122 can store a different kind of connecting module having a connecting configuration (function) different from that of the connecting module 123.
摘要:
An optical access network system for making a connection between a central-office optical cable and a subscriber optical cable is provided, the optical access network system being capable of facilitating the operation of laying optical cable. The optical access network system includes a connecting optical cable for forming a connection with one or a plurality of the subscriber optical cables, the connecting optical cable being obtained by assembling together a plurality of component cables having the same number of fibers as the one or plurality of subscriber optical cables. This optical access network system preferably further includes a subscriber enclosure for connecting one of the subscriber cables from among the one or plurality of subscriber optical cables and one of the component cables from among the plurality of component cables of the connecting cable.
摘要:
Provided is a connected optical fiber that is stable and has minimal connection loss even in a high-temperature or low-temperature environment, without involving an excessive amount of labor in the optical fiber connection process, and also provided is a method for assembling a connected optical fiber. The connected optical fiber includes a first optical fiber, a second optical fiber, and a mechanical splice, an end face of the first optical fiber and an end face of the second optical fiber being placed end to end and mechanically connected in the mechanical splice. In this connected optical fiber, at least one end face among the end face of the first optical fiber and the end face of the second optical fiber is formed having a convex curved surface shape in a direction angled with respect to a surface perpendicular to an axis of the optical fiber that has the end face.
摘要:
The shapes of the upper tire bead Bu and the lower tire bead Bl of a green tire G and the axial distance between the tire beads Bu and Bl are corrected in a short work time. The green tire G is placed in horizontal attitude on a green tire support table 3 provided with a lower tire bead correcting unit 10. Radially movable pressing members 13 included in the lower tire bead correcting unit 10 are engaged with the inner side of the lower tire bead Bl of the green tire G and stoppers 29 of the upper tire bead correcting unit 20 are engaged with the inner side of the upper tire bead Bu of the green tire G placed on the green tire support table 3. The pressing members 13 of the lower tire bead correcting unit 10 are moved radially outward to shape the lower tire bead Bl into a completely round shape of a predetermined diameter. The stoppers 29 of the upper tire bead correcting unit 20 are moved radially outward to shape the upper tire bead Bu into a completely round shape of a predetermined diameter and, at substantially the same time, the upper tire bead correcting unit 20 or the lower tire bead correcting unit 10 is moved vertically to adjust the axial distance B between the tire beads Bu and Bl to a predetermined axial bead spacing.
摘要:
The shapes of the upper tire bead Bu and the lower tire bead Bl of a green tire G and the axial distance between the tire beads Bu and Bl are corrected in a short work time. The green tire G is placed in horizontal attitude on a green tire support table 3 provided with a lower tire bead correcting unit 10. Radially movable pressing members 13 included in the lower tire bead correcting unit 10 are engaged with the inner side of the lower tire bead Bl of the green tire G and stoppers 29 of the upper tire bead correcting unit 20 are engaged with the inner side of the upper tire bead Bu of the green tire G placed on the green tire support table 3. The pressing members 13 of the lower tire bead correcting unit 10 are moved radially outward to shape the lower tire bead Bl into a completely round shape of a predetermined diameter. The stoppers 29 of the upper tire bead correcting unit 20 are moved radially outward to shape the upper tire bead Bu into a completely round shape of a predetermined diameter and, at substantially the same time, the upper tire bead correcting unit 20 or the lower tire bead correcting unit 10 is moved vertically to adjust the axial distance B between the tire beads Bu and Bl to a predetermined axial bead spacing.
摘要:
A container box for use in a communication apparatus. The container box has a container case defining an internal space; partitions connected to the container case for partitioning the internal space to have at least two accommodating chambers; and a container cover corresponding to each of the at least two accommodating chambers. Each cover is connected to the container case for independently closing and opening the at least two accommodating chambers. Wherein the at least two accommodating chambers each have differing degrees of waterproof level.
摘要:
An attaching arrangement for attaching, to a communications apparatus container box, an optical cable case which includes a case body for accommodating an optical cable and a case end portion attached to the case body. The attaching arrangement includes: a first rotary hinge having a first rotary hinge axis for rotatably attaching the case end portion to the container box around the first rotary hinge axis; and a second rotary hinge having a second rotary hinge axis perpendicular to the first rotary hinge axis for rotatably attaching the case end portion to the container box around the second rotary hinge axis. In a preferred implementation, the attaching arrangement further includes: a slide rail slidably attached to an inner surface of the container box along a direction parallel to the second rotary hinge axis so that the slide rail is slidable from an inside of the container box to an outside of the container box and from the outside of the container box to the inside of the container box. The first and second rotary hinges rotatably attach the case end portion to a forward end of the slide rail in an advancing direction in which the slide rail moves from the inside of the container box to the outside of the container box.