摘要:
A negative electrode material comprising composite particles having silicon nano-particles dispersed in silicon oxide is suited for use in nonaqueous electrolyte secondary batteries. The silicon nano-particles have a size of 1-100 nm. The composite particles contain oxygen and silicon in a molar ratio: 0
摘要:
A metallic silicon powder is prepared by effecting chemical reduction on silica stone, metallurgical refinement, and metallurgical and/or chemical purification to reduce the content of impurities. The powder is best suited as a negative electrode material for non-aqueous electrolyte secondary cells, affording better cycle performance.
摘要:
A Si—C—O composite powder is obtained by curing a reactive silane or siloxane having crosslinkable groups through heat curing or catalytic reaction into a crosslinked product and sintering the crosslinked product in an inert gas stream at a temperature of 700-1,400° C. into an inorganic state. It exhibits satisfactory cycle performance when used as the negative electrode material for non-aqueous electrolyte secondary cells.
摘要:
A negative electrode material comprising an active material and 1-20 wt % of a polyimide resin binder is suitable for use in non-aqueous electrolyte secondary batteries. The active material comprises silicon oxide particles and 1-50 wt % of silicon particles. The negative electrode exhibits improved cycle performance while maintaining the high battery capacity and low volume expansion of silicon oxide. The non-aqueous electrolyte secondary battery has a high initial efficiency and maintains improved performance and efficiency over repeated charge/discharge cycles by virtue of mitigated volumetric changes during charge/discharge cycles.
摘要:
A silicon composite comprises silicon particles whose surface is at least partially coated with a silicon carbide layer. It is prepared by subjecting a silicon powder to thermal CVD with an organic hydrocarbon gas and/or vapor at 900-1,400° C., and heating the powder for removing an excess free carbon layer from the surface through oxidative decomposition.
摘要:
Organohalosilanes are prepared by the Rochow process of reacting metallic silicon particles with an organohalide in the presence of a copper catalyst. The metallic silicon particles, which are prepared by committing fragments of metallic silicon raw material, have a mean particle size of 10 &mgr;m to 10 mm and a surface oxygen quantity of at least 0.05 wt % and/or at least 0.001 g of oxygen/m2 of silicon surface area, which is given as the difference between the oxygen concentrations determined by in-metal oxygen analysis of the metallic silicon particles and the fragments, respectively. On analysis, the metallic silicon particles have been held for at least 3 hours in an air atmosphere at 25° C. and RH 55%
摘要翻译:有机卤代硅烷通过在铜催化剂存在下使金属硅颗粒与有机卤化物反应的Rochow方法制备。 通过制造金属硅原料的碎片而制备的金属硅颗粒的平均粒径为10〜10μm,表面氧量为0.05重量%以上,和/或至少为0.001克氧/ m 2 的硅表面积,其分别由金属硅颗粒和片段的金属间氧分析确定的氧浓度之差给出。 经分析,金属硅颗粒在空气气氛中在25℃下保持至少3小时,RH为55%
摘要:
Silicon nitride powder is prepared by continuously supplying metallic silicon powder to a first fluidized bed which is composed of silicon nitride powder and a non-oxidizing reaction gas containing nitrogen or ammonia gas and maintained at 1,000.degree. to 1,400.degree. C. where primary nitriding reaction takes place, and continuously withdrawing the nitride product from the first fluidized bed and supplying it to a second fluidized bed of similar composition where secondary nitriding reaction takes place for nitriding the unreacted metallic silicon powder.
摘要:
A Si—C—O composite powder is obtained by curing a reactive silane or siloxane having crosslinkable groups through heat curing or catalytic reaction into a crosslinked product and sintering the crosslinked product in an inert gas stream at a temperature of 700-1,400° C. into an inorganic state. It exhibits satisfactory cycle performance when used as the negative electrode material for non-aqueous electrolyte secondary cells.
摘要:
A lithium ion secondary cell having a high capacity, improved first charge/discharge efficiency and improved cycle performance is obtainable using as the negative electrode material a lithium-containing silicon oxide powder having the formula: SiLixOy wherein x and y are 0
摘要:
A silicon oxide powder can be continuously prepared by feeding a raw material powder mixture containing silicon dioxide powder into a reaction chamber (2) at a temperature of 1,100-1,600° C., to produce a silicon oxide gas, transferring the silicon oxide gas to a deposition chamber (11) through a transfer conduit (10) maintained at a temperature of from higher than 1,000° C. to 1,300° C., causing silicon oxide to deposit on a substrate (13) which is disposed and cooled in the deposition chamber, scraping the silicon oxide deposit, and recovering the deposit in a recovery chamber (18). The method and apparatus is capable of continuous and stable production of amorphous silicon oxide powder of high purity.