摘要:
A semiconductor laser device including a laser element stack array emitting a two-dimensional array shaped group of laser beams consisting of rows of laser beams arranged linearly in parallel in a broken line configuration and optical elements arranged in front of the array, receiving rows of laser beams bent and collimated in a direction substantially perpendicular to the orientation of the broken line configuration. Laser beams are emitted from emitters or groups of emitters and are rotated by right angles so as to convert the laser beams to a plurality of rows aligned in parallel in an approximate ladder rung configuration and the distance between center axes of the rows of laser beams is shortened to condense the laser beams by converting them to a group of laser beams emitted from a common object and thereby making all laser beams converge to a single image.
摘要:
A semiconductor laser device including a laser element stack array emitting a two-dimensional array shaped group of laser beams consisting of rows of laser beams arranged linearly in parallel in a broken line configuration and optical elements arranged in front of the array, receiving rows of laser beams bent and collimated in a direction substantially perpendicular to the orientation of the broken line configuration. Laser beams are emitted from emitters or groups of emitters and are rotated by right angles so as to convert the laser beams to a plurality of rows aligned in parallel in an approximate ladder rung configuration and the distance between center axes of the rows of laser beams is shortened to condense the laser beams by converting them to a group of laser beams emitted from a common object and thereby making all laser beams converge to a single image.
摘要:
The present invention provides a grain-oriented electrical steel sheet with an extremely low core loss by scanning by a small focused laser beam spot and a method of production of the same, that is, a grain-oriented electrical steel sheet improved in electrical characteristics by scanning by a continuous wave fiber laser of the TEM00 mode with a wavelength λ of 1.07≦λ≦2.10 μm substantially perpendicular to the steel sheet rolling direction and at substantially constant spacing and a method of production of the same, wherein a rolling direction focused spot diameter d (mm) of the irradiated beam, a linear scan rate V (mm/s) of the laser beam, an average output P (W) of the laser, a width of the formed laser scribing traces or with of the electrical domains Wl (mm), and a rolling direction Pl (mm) of the laser scribing traces are in the following ranges: 0
摘要:
The present invention provides a grain-oriented electrical steel sheet with an extremely low core loss by scanning by a small focused laser beam spot and a method of production of the same, that is, a grain-oriented electrical steel sheet improved in electrical characteristics by scanning by a continuous wave fiber laser of the TEM00 mode with a wavelength λ of 1.07≦λ≦2.10 μm substantially perpendicular to the steel sheet rolling direction and at substantially constant spacing and a method of production of the same, wherein a rolling direction focused spot diameter d (mm) of the irradiated beam, a linear scan rate V (mm/s) of the laser beam, an average output P (W) of the laser, a width of the formed laser scribing traces or with of the electrical domains Wl (mm), and a rolling direction Pl (mm) of the laser scribing traces are in the following ranges: 0
摘要:
A low core loss grain-oriented electrical steel sheet that does not have a significant deterioration in a magnetic flux density and a decrease of a space factor, and which may withstand stress-relieving annealing is provided. Melted and re-solidified layers can be formed on either or both of the surfaces of the grain-oriented electrical steel sheet that extend in a direction that is perpendicular to the rolling direction (e.g., in the direction of the width thereof), at a cyclic interval of not less than approximately 2 mm to less than approximately 5 mm in the rolling direction. The melted and re-solidified layers may be provided on each surface of the grain-oriented electrical steel sheet, and can have an aspect ratio that is a ratio of the depth to the width of the melted and re-solidified layer of not less than approximately 0.20 and a depth of not less than approximately 15 μm. In addition, the melted and re-solidified layers can be formed by using a laser.
摘要:
In a method for producing a grain-oriented electrical steel sheet, grooves each having a given length and extending in a direction including a direction perpendicular to a transportation direction of the grain-oriented electrical steel sheet are formed at given intervals in the transportation direction by irradiating the surface of the grain-oriented electrical steel sheet with a laser beam while scanning the surface of the grain-oriented electrical steel sheet with the laser beam. Further, in the method for manufacturing a grain-oriented electrical steel sheet, the laser beam is a continuous-wave laser beam having a laser wavelength λ of 1.0 μm to 2.1 μm, power density Pd [W/mm2] which is obtained by dividing laser beam intensity P by a focused beam area S is 5×105 W/mm2 or more, and the power density Pd [W/mm2] and scanning speed V [mm/s] of a focused spot of the laser beam on the surface of the grain-oriented electrical steel sheet satisfy a relationship of 0.005×Pd+3000≦V≦0.005×Pd+40000.
摘要:
This method of manufacturing a grain-oriented electrical steel sheet includes, between a cold rolling process and a winding process, a groove formation process of irradiating the surface of a silicon steel sheet with a laser beam multiple times at predetermined intervals in a sheet passing direction, over an area from one end edge to the other end edge, in a sheet width direction of the silicon steel sheet, thereby forming a groove along a locus of the laser beam.
摘要:
The present invention provides a method of production of grain-oriented electrical steel sheet greatly reducing the Watt loss of the grain-oriented electrical steel sheet and making the magnetostriction as small as possible, that is, a method of production of grain-oriented electrical steel sheet with small magnetostriction by improving the magnetic properties by irradiation by a finely focused laser beam comprising using a power modulated laser controlled in maximum power density to 1×102 to 1×104 W/mm2 to optimize the amount of strain given by laser irradiation in both the sheet width direction and rolling direction and, in particular, to make the modulation duty 70% to less than 100%.
摘要翻译:本发明提供了一种大幅度降低方向性电磁钢板的瓦特损耗并使磁致伸缩尽可能小的方向性电磁钢板的制造方法,即制造方向性电磁钢的方法 通过用精细聚焦的激光束照射来提高磁特性的片材,其包括使用以最大功率密度控制的功率调制激光为1×102-1×104W / mm 2,以优化激光照射在片材宽度中施加的应变量 方向和滚动方向,特别是使调制度为70%至小于100%。
摘要:
This method of manufacturing a grain-oriented electrical steel sheet includes, between a cold rolling process and a winding process, a groove formation process of irradiating the surface of a silicon steel sheet with a laser beam multiple times at predetermined intervals in a sheet passing direction, over an area from one end edge to the other end edge, in a sheet width direction of the silicon steel sheet, thereby forming a groove along a locus of the laser beam.
摘要:
There is provided a method for manufacturing a grain-oriented electromagnetic steel sheet whose iron losses are reduced by laser beam irradiation, capable of improving the iron losses in both the L-direction and the C-direction while easily ensuring high productivity. The method for manufacturing a grain-oriented electromagnetic steel sheet reduces iron losses by scanning and irradiating a grain-oriented electromagnetic steel sheet with a continuous-wave laser beam condensed into a circular or elliptical shape at constant intervals in a direction substantially perpendicular to a rolling direction of the grain-oriented electromagnetic steel sheet, wherein when an average irradiation energy density Ua is defined as Ua=P/(Vc×PL) (mJ/mm2), where P (W) is average power of the laser beam, Vc (m/s) is a beam scanning velocity, and PL (mm) is an irradiation interval in a rolling direction, PL and Ua are in the following ranges: 1.0 mm≦PL≦3.0 mm, 0.8 mJ/mm2≦Ua≦2.0 mJ/mm2.