摘要:
To provide a waveguide type wavelength domain optical switch which makes it possible to use a cheap lens, makes it possible to correct aberration of the demultiplexed wavelengths produced in a plurality of waveguide type demultiplexing circuits, a wavelength domain optical switch is provided with: an integrated element formed by laminating three or more waveguide type demultiplexing circuits; a first lens for collecting light emitted from the integrated element; a polarization separation element for separating light emitted from the first lens into X polarization and Y polarization and emitting the X polarization and the Y polarization at different angles; a second lens for collecting the X polarization and the Y polarization; a first reflective optical phase modulator for reflecting the collected X polarization and Y polarization at any angles; a ½-wavelength plate disposed between the second lens and the first reflective optical phase modulator in order to make polarization directions of the X polarization and the Y polarization identical; and a second reflective optical phase modulator for inputting light from the first reflective optical phase modulator into one of the waveguide type demultiplexing circuits.
摘要:
An optical waveguide-type wavelength domain switch includes a waveguide-type multi/demultiplexing device laminate comprising three or more laminated waveguide-type multi/demultiplexing devices, a lens system positioned on a demultiplex side of the waveguide-type multi/demultiplexing device laminate, and a reflective optical phase-modulating cell positioned on an opposite side of the waveguide-type multi/demultiplexing device laminate to the lens system. The lens system includes a lens alignment composed of plural lenses in one-to-one correspondence with the waveguide-type multi/demultiplexing devices and having a light-collecting or collimating function in the lens-aligning direction, an image-magnifying optical system having an N:1 (N>1) image-magnifying function arranged on the optical phase-modulating cell side of the lens alignment, an f-f lens (Y) arranged on the optical phase-modulating cell side of the image-magnifying optical system, and having a light-collecting or collimating function in the same direction as the lens-aligning direction of the lens alignment, and an f-f lens (X) having a light-collecting or collimating function in a perpendicular direction to the lens-aligning direction of the lens alignment.
摘要:
To provide a waveguide type wavelength domain optical switch which makes it possible to use a cheap lens, makes it possible to correct aberration of the demultiplexed wavelengths produced in a plurality of waveguide type demultiplexing circuits, a wavelength domain optical switch is provided with: an integrated element formed by laminating three or more waveguide type demultiplexing circuits; a first lens for collecting light emitted from the integrated element; a polarization separation element for separating light emitted from the first lens into X polarization and Y polarization and emitting the X polarization and the Y polarization at different angles; a second lens for collecting the X polarization and the Y polarization; a first reflective optical phase modulator for reflecting the collected X polarization and Y polarization at any angles; a ½-wavelength plate disposed between the second lens and the first reflective optical phase modulator in order to make polarization directions of the X polarization and the Y polarization identical; and a second reflective optical phase modulator for inputting light from the first reflective optical phase modulator into one of the waveguide type demultiplexing circuits.
摘要:
An optical waveguide-type wavelength domain switch includes a waveguide-type multi/demultiplexing device laminate comprising three or more laminated waveguide-type multi/demultiplexing devices, a lens system positioned on a demultiplex side of the waveguide-type multi/demultiplexing device laminate, and a reflective optical phase-modulating cell positioned on an opposite side of the waveguide-type multi/demultiplexing device laminate to the lens system. The lens system includes a lens alignment composed of plural lenses in one-to-one correspondence with the waveguide-type multi/demultiplexing devices and having a light-collecting or collimating function in the lens-aligning direction, an image-magnifying optical system having an N:1 (N>1) image-magnifying function arranged on the optical phase-modulating cell side of the lens alignment, an f-f lens (Y) arranged on the optical phase-modulating cell side of the image-magnifying optical system, and having a light-collecting or collimating function in the same direction as the lens-aligning direction of the lens alignment, and an f-f lens (X) having a light-collecting or collimating function in a perpendicular direction to the lens-aligning direction of the lens alignment.
摘要:
A human TNF polypeptide mutant having an amino acid sequence of modified human TNF polypeptide, a DNA having a base sequence encoding the above human TNF polypeptide mutant and a method of producing the above human TNF polypeptide mutant by culturing a host transformed with a vector having inserted therein the above DNA. The above human TNF polypeptide mutant is soluble and has antitumor activity.
摘要:
A dielectric dispersion determining method applying a transient grating method. The transient response of a sample is observed by the transient grating method using a femtosecond ultrashort visible optical pulse. A vibrational waveform b(t) is determined such that its square b(t).sup.2 replicates vibrational components observed in the transient response. The vibrational waveform b(t) is converted into b(.omega.) through the Fourier transform. The dielectric constant .epsilon.(.omega.) is obtained by substituting the converted value for b(.omega.)/.omega..sup.2 on the right-hand side of the following equation (1) derived from Maxwell's equations. The dielectric constant and/or refraction index can be directly obtained from the transient response to the femtosecond ultrashort visible optical pulse without passing through the dispersion relation which leaves some ambiguity in its definition. ##EQU1##
摘要:
An indole derivative of the formula: ##STR1## wherein R.sub.1 is lower alkoxy, lower alkoxycarbonyl-lower alkoxy, carboxy-lower alkoxy, lower alkoxycarbonyl, phenyl-lower alkoxy, lower alkyl being optionally substituted by hydroxy, di-lower alkylaminosulfonyl, etc., R.sub.2 is hydrogen, halogen, lower alkoxy, lower alkoxycarbonyl-lower alkoxy, carboxy-lower alkoxy, etc., R.sub.3 is hydrogen or lower alkyl, R.sub.4 is halogen or trifluoromethyl, R.sub.5 is lower alkyl, or a salt thereof, these compounds being potent .beta..sub.3 -adrenergic receptor-stimulating agent with excellent adrenoceptor selectivity, and being useful in the prophylaxis or treatment of obesity or diabetes mellitus.
摘要:
The present invention provides a solid preparation comprising a crystal of [3-[(2R)-[[(2R)-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1H-indol-7-yloxy]acetic acid (Compound A), especially a crystal of Compound A having a particle size of not larger than 100 &mgr;m at the cumulative weight distribution value of 50%, and not larger than 200 &mgr;m at the cumulative weight distribution value of 95%, preferably a solid preparation having the excellent stability and the content uniformity of Compound A, which is prepared by preparing granules of the crystal of Compound A with fillers, disintegrants and binders, and then followed by mixing said granules with external excipients.
摘要:
Novel polypeptides having a modified amino acid sequence of human interleukin 1.alpha. polypeptides in which a certain amino acid residue(s) in said amino acid sequence is(are) exchanged for other amino acid residue(s). Said polypeptides having no capacity of induction of production of prostaglandin E.sub.2 while maintaining other biological activities of human interleukin 1 such as activation of lymphocyte and being expected to be useful as a medicament.
摘要:
A method for forming an automobile bead assembly comprises three series of steps. The first series includes placing a bead ring onto the smaller-diameter side surface of a taper drum, winding a bead filler around the peripheral surface of the taper drum such that the thick-walled portion thereof projects over the smaller diameter surface of the drum, bonding the ends of the filler together, bending the thick-walled portion along the smaller-diameter side edge to join it to the bead ring, and separating the front end portion of the filler from the peripheral surface of the drum. The second series includes winding a side ply around the outer periphery of a cylindrical forming drum, bonding the ends together, winding a bead flipper around the side ply while part of the flipper overlaps the side ply, and joining the ends of the flipper together. The third series includes removing the filler/bead ring subassembly from the taper drum and placing it onto the single layer of the flipper on the forming drum, bending the inward portion of the flipper such that it extends along the inside of the bead ring and filler, bending the portion of the flipper and side ply, which projects outwardly of the bead ring such that it extends along the outer surfaces of the filler/bead ring, and bending the overlap region of the flipper, side ply and filler such that the side ply lies on the periphery thereby providing a conical form.