摘要:
According to the present invention, a method for ultrafast and precise measurement and analysis of biomolecules using a small sample was established, and moreover, a compact and simple micro fluid device for implementing the method was provided. Using the method and the micro fluid device of the present invention, the ultrafast, instant, and precise analysis of biomolecules is possible, and there is a great deal of potential for application in the research field, manufacturing field or medical field, environmental monitoring and the like.
摘要:
This invention provides a method to monitor a microorganism that causes infectious disease of a laboratory animal by using a micro flow channel chip immobilized with a molecular to be tested such as an antigen or an antibody of the microorganism that causes infectious disease, the method comprises flowing serum or body fluid taken from the laboratory animal through the minute flow channel of the micro flow channel chip and detecting the antigen antibody reaction on the chip. The method of this invention enabled medical inspection of an infectious disease of a laboratory animal and microorganism monitoring of a laboratory animal, by using minute amount of animal serum or body fluid in a closed system rapidly and sensitively.
摘要:
Plasma processing apparatus and plasma processing methods capable of maintaining etching characteristics and to prevent degradation of a lower electrode even when the focus ring is severely eroded by the plasma are disclosed. According to an exemplary embodiment, a side-surface protecting ring formed of a ceramic material having an erosion rate by the plasma lower than an erosion rate of the material of the focus ring is provided to cover the side surface of the lower electrode. As a result, it becomes possible to prevent the side surface of the lower electrode from being exposed to the plasma and maintain the etching characteristics even after the focus ring is severely eroded. Further, degradation of the lower electrode is decreased.
摘要:
Plasma processing apparatus and plasma processing methods capable of maintaining acceptable etching characteristics and to prevent degradation of a lower electrode even when the focus ring is severely eroded by the plasma, while leaving the plasma discharge conditions used in the conventional apparatus and methods substantially unchanged, are disclosed. According to an exemplary embodiment, a side-surface protecting ring formed of a ceramic material is provided to cover the side surface of the lower electrode such that an outer perimeter of the side-surface protecting ring is approximately aligned with, or inside, an outer perimeter of the substrate to be processed. As a result, the side-surface protecting ring does not influence the plasma characteristic.