摘要:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit. A collision surface of the metal target 42 is positioned spatially at the same position as that of the collision point 2a. At the retreat position of the metal target, the pulse electron beam 1 collides with the pulse laser light 3 to generate a monochromatic hard X-ray 4. At the collision position of the metal target 42, the pulse electron beam 1 collides with the metal target 42 to generate the particular X-ray 5 from the same light source position 2a.
摘要:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit.
摘要:
A multi-color X-ray generator includes an electron beam generator 10 which accelerates an electron beam to generate a pulse electron beam 1 and which transmits the beam along a predetermined rectilinear orbit 2, a composite laser generator 20 which successively generates a plurality of pulse laser lights 3a, 3b having different wavelengths, and a laser light introduction device 30 which introduces the pulse laser lights along the rectilinear orbit 2 to be opposed to the pulse electron beam 1, so that the plurality of pulse laser lights 3a, 3b successively head-on collide with the pulse electron beam 1 along the rectilinear orbit 2 so as to generate two or more types of monochromatic hard X-rays 4 (4a, 4b).
摘要:
A multi-color X-ray generator includes an electron beam generator 10 which accelerates an electron beam to generate a pulse electron beam 1 and which transmits the beam along a predetermined rectilinear orbit 2, a composite laser generator 20 which successively generates a plurality of pulse laser lights 3a, 3b having different wavelengths, and a laser light introduction device 30 which introduces the pulse laser lights along the rectilinear orbit 2 to be opposed to the pulse electron beam 1, so that the plurality of pulse laser lights 3a, 3b successively head-on collide with the pulse electron beam 1 along the rectilinear orbit 2 so as to generate two or more types of monochromatic hard X-rays 4 (4a, 4b).
摘要:
An electron beam detection device (34) is arranged on an electron beam passing path so that a beam delay time tB from a passing moment of an electron beam (1) to a moment when the beam reaches a predicted collision point (9a) is longer than a laser delay time tL from a moment when a command for generating laser light (3) is issued to the moment when the laser light reaches the predicted collision point (9a) by at least a predetermined delay time Δt. The device (34) may detect passing therethrough without affecting the electron beam and output a laser light generation command from a laser light command delay circuit (36) when the predetermined delay time Δt (=tB−tL) has elapsed after the detection.
摘要:
A high brightness X-ray generator and a high brightness X-ray generating method are provided which are able to promote an increase in X-ray brightness (i.e., an increase in an X-ray output) while suppressing an excessive increase in the cost of optical elements such as a laser unit, a mirror, and a lens. A high brightness X-ray generator generates an X-ray by inverse Compton scattering by colliding an electron beam with pulse laser light. There are provided a plurality of pulse laser units (32A, 32B) which emits a plurality of pulse laser lights (3a, 3b ) in predetermined periods, an optical-path matching unit (34) which matches optical paths of the plurality of pulse laser lights, and a timing control unit (40) which controls timings of the optical-path matching unit and the pulse laser units, wherein the plurality of pulse laser lights is emitted from the same optical path at different timings.
摘要:
A device for measuring profiles of an electron beam and a laser beam is provided with a profile measuring device 30 for measuring cross-section profiles of the beams in the vicinity of a collision position where an electron beam 1 and a laser beam 3 are brought into frontal collision, and a moving device 40 for continuously moving the profile measuring device in a predetermined direction which substantially coincides with the axial directions of the beams. Furthermore, based on the cross-section profiles measured by the profile measuring device, the position of the profile measuring device in the predetermined direction, and the oscillation timings of the beams, temporal changes in three-dimensional profiles of the electron beam and the laser beam are created by a profile creating device 50.
摘要:
An X-ray waveform is generated by validating detection data corresponding to when an X-ray (4) is generated at a collision point (9) among X-ray detection data and invalidating other data. For example, when laser light (3) is pulse laser light and an electron beam (1) is a continuous electron beam or a pulse-like electron beam having a pulse width equal to or greater than that of the pulse laser light, the X-ray waveform is generated by detecting the laser light (3) and multiplying the X-ray detection data by laser light detection data after making time axes coincident with respect to the collision point (9).
摘要:
An electron beam detection device (34) is arranged on an electron beam passing path so that a beam delay time tB from a passing moment of an electron beam (1) to a moment when the beam reaches a predicted collision point (9a) is longer than a laser delay time tL from a moment when a command for generating laser light (3) is issued to the moment when the laser light reaches the predicted collision point (9a) by at least a predetermined delay time Δt. The device (34) may detect passing therethrough without affecting the electron beam and output a laser light generation command from a laser light command delay circuit (36) when the predetermined delay time Δt (=tB−tL) has elapsed after the detection.
摘要:
A high brightness X-ray generator and a high brightness X-ray generating method are provided which are able to promote an increase in X-ray brightness (i.e., an increase in an X-ray output) while suppressing an excessive increase in the cost of optical elements such as a laser unit, a mirror, and a lens. A high brightness X-ray generator generates an X-ray by inverse Compton scattering by colliding an electron beam with pulse laser light. There are provided a plurality of pulse laser units (32A, 32B) which emits a plurality of pulse laser lights (3a, 3b) in predetermined periods, an optical-path matching unit (34) which matches optical paths of the plurality of pulse laser lights, and a timing control unit (40) which controls timings of the optical-path matching unit and the pulse laser units, wherein the plurality of pulse laser lights is emitted from the same optical path at different timings.