Abstract:
To provide a safe stationary induction electrical apparatus that prevents a fragment coming off a magnetic shield, wound around an iron core leg portion of the stationary induction electrical apparatus, due to vibrations from being released in a tank accommodating the stationary induction electrical apparatus and thus prevents a trouble such as dielectric breakdown. Moreover, to provide a stationary induction electrical apparatus that does not need to be changed in the dimensions of an iron core for securing an insulation distance due to the placement of a magnetic shield and can reduce a compressive force generated in a winding. A magnetic material is provided in the interiors of insulating members whose interiors are hollow and which are provided in the vicinities of upper and lower ends of the winding wound around the iron core leg portion of the stationary induction electrical apparatus.
Abstract:
An eddy current testing apparatus includes: an eddy current testing probe having an eddy current testing coil arranged on a bottom portion of a casing; a pressing mechanism configured to press the eddy current testing probe so that the bottom portion of the eddy current testing probe is placed in contact with a part of an inner wall surface of a slot formed in an object to be inspected; a carriage configured to mount the pressing mechanism and the eddy current testing probe, the carriage traveling in a depth direction of the slot; and an eddy current testing control device configured to control defect detection for the inner wall surface of the slot by acquiring a detected eddy current signal from the eddy current testing coil.
Abstract:
The present invention is to improve a performance of a transformer having wound iron cores. The transformer having the wound iron cores which have multi-layer band-shape magnetic material, and a coil wound to pass through an inner circumference of the wound iron core, includes a wound iron core holding member that is a member longer than a width of the wound iron core for supporting an upper inner portion of the wound iron core, a coil holding member for supporting a lower outer portion of the coil, a first support structure including an upper beam arranged on an outer circumference of the wound iron core to support the wound iron core holding member, and a lower beam arranged on an outer circumference of the coil to support the coil holding member, and a second support structure including a pair of outer plates arranged on an inner portion of the upper frame and connected to a connection member that is longer than a width obtained by adding a diameter of the wound iron core and a diameter of the coil, and a wound iron core protection structure that is longer than a width of the wound iron core, for covering a portion where the outer circumference of the coil and an inner portion of the wound iron core face each other, and being connected to the outer plates.
Abstract:
There is provided a stationary induction electric apparatus including a core; a disk winding wound around the core; and a tank having the core and the disk winding inside. The disk winding is configured by stacking a plurality of pancake windings wound to pile in the radius direction of the core and connecting ends of the plurality of pancake windings to each other.
Abstract:
Provided is an oil leakage detection apparatus by which oil leakage detection is performed even for colorless oil with high detection accuracy and without complicating the apparatus. The oil leakage detection apparatus of the invention includes a distance measurement unit configured to measure a distance to the oil-input machine, an ultraviolet light source configured to irradiate the oil-input machine with ultraviolet light, a color imaging unit configured to capture an image of the oil-input machine irradiated with ultraviolet light, an image processing unit configured to diagnose oil leakage of the oil-input machine based on the distance measured by the distance measurement unit and the captured image of the color imaging unit, and a display unit configured to display a processed image processed by the image processing unit. Further, an oil leakage detection method of the invention includes measuring a distance from an oil-input machine, irradiating the oil-input device with ultraviolet light, capturing an image of the oil-input machine irradiated with ultraviolet light, diagnosing oil leakage of the oil-input machine based on the measured distance and the captured image, and displaying a processed image after the diagnosis processing.
Abstract:
The invention is directed to a stationary induction electric device that can reduce loss. To this end, the stationary induction electric device is provided with a first iron core block erected and formed in an annular shape, a second iron core block configured to surround the outer periphery of the first iron core block, a winding wound around the first and the second iron core blocks, a first support plate supporting the upper portion of the first iron core block from below, and a second support plate supporting the upper portion of the second iron core block from below, and a curvature radius of a curved portion appearing on the outer periphery of the lower portion of the second iron core block is made larger than a curvature radius of a curved portion appearing on the outer periphery of the upper portion of the second iron core block.
Abstract:
Generation of broken pieces of thin magnetic ribbons is reduced with respect to a joint part of an iron core, which is formed by laminating the thin magnetic ribbons, of a stationary induction apparatus. There is provided an iron core joint structure of the stationary induction apparatus characterized such that in a butt joint part of the iron core, which is configured with the laminated thin magnetic ribbons, of the stationary induction apparatus, a first resin penetrated into the laminated magnetic ribbons is applied to each of butt joint surfaces facing each other, and a second resin is further applied to an outer side of the first resin.
Abstract:
The invention provides a core for a stationary induction apparatus including an amorphous core formed of an amorphous thin magnetic strip arranged inside the core, a silicon steel sheet core formed of a silicon steel sheet arranged on a side surface of the amorphous core, a wear plate arranged on the outermost peripheral surface of the silicon steel sheet core, an amorphous core frame arranged around the amorphous core including a space between the amorphous core and the silicon steel sheet core, and a support frame which supports and fixes the amorphous core and the silicon steel sheet core via the wear plate.
Abstract:
There is provided a stationary induction apparatus having a tank accommodating a transformer main body therein, in which a vibration suppression steel material is provided in at least a portion in the vicinity of an edge portion on a tank bottom surface. In addition, a portion of the vibration suppression steel material is made attachable and detachable.
Abstract:
A stationary induction electric apparatus includes an iron core having legs of core and yokes of core; windings wound around the legs of core; coolant for cooling the windings; a cylindrical insulation structure that forms a flow of the coolant around the windings; baffle members alternately provided on the inner wall side and the outer wall side of the cylindrical insulation structure; and adjustment members for constricting the flow of the coolant. The adjustment members are provided on the same side of the respective baffle members and on the respective baffle members.