Abstract:
A magnetoresistive head which has a high low resistance and a high MR ratio at room temperature and a S/N ratio that does not decrease sharply upon application of a bias voltage. The magnetoresistive head comprises a soft magnetic free layer, a non-magnetic insulating layer, and a ferromagnetic pinned layer. The ferromagnetic pinned layer may have a spin valve layer whose magnetization is fixed with respect to the magnetic field to be detected, and the soft magnetic free layer permits its magnetization to rotate in response to an external magnetic field, thereby changing the relative angle with the magnetization of said ferromagnetic pinned layer and producing the magnetoresistive effect. The absolute value of the magnetoresistive effect has a peak at a temperature in the range from about 0null C. to 60null C. and for a bias voltage Vs (applied across said ferromagnetic pinned layer and said soft magnetic free layer) in the range from null0.2 to null0.8 V and from null0.8 to null0.2 V. The above characteristics may be achieved if the ferromagnetic pinned layer is formed from Fe3O4 or at least one oxide or compound of Cr and Mn; the non-magnetic insulating layer is formed from at least one oxide of Sr, Ti, and Ta; or the soft magnetic free layer is a CoFe alloy containing 70-100 atom % of Co, the ferromagnetic pinned layer is a CoFe alloy containing 0-70 atom % of Co, and the non-magnetic insulating layer is formed from at least one oxide of Sr, Ti, and Ta.
Abstract:
A three terminal magnetoresistance head capable of providing a high output and a large output current is provided. A MIS junction multilayer film composed of a magnetic semiconductor, a metal magnetic multilayer film, and a tunnel magnetoresistance element is applied to a three terminal magnetoresistance device.
Abstract:
The invention provides a magnetic head for perpendicular recording capable of recording with high linear recording density and high track density, and a magnetic disk drive incorporating the same. In order to achieve this, one or more sides of the main pole of the magnetic head for perpendicular recording except for the trailing side are formed in a taper with an appropriate angle against the tip surface of the main pole, and the yoke whose widest principal plane is in parallel to the tip surface is provided on the bottom of the main pole. Thereby, the invention achieves the magnetic head for perpendicular recording that generates a sufficiently high magnetic field, and assumes a sharp gradient of magnetic field on the trailing side. By incorporating this magnetic head, a magnetic disk drive capable of handling high linear recording density can be produced.
Abstract:
A magnetoresistive head which has a high low resistance and a high MR ratio at room temperature and a S/N ratio that does not decrease sharply upon application of a bias voltage. The magnetoresistive head comprises a soft magnetic free layer, a non-magnetic insulating layer, and a ferromagnetic pinned layer. The ferromagnetic pinned layer may have a spin valve layer whose magnetization is fixed with respect to the magnetic field to be detected, and the soft magnetic free layer permits its magnetization to rotate in response to an external magnetic field, thereby changing the relative angle with the magnetization of said ferromagnetic pinned layer and producing the magnetoresistive effect. The absolute value of the magnetoresistive effect has a peak at a temperature in the range from about 0null C. to 60null C. and for a bias voltage Vs (applied across said ferromagnetic pinned layer and said soft magnetic free layer) in the range from null0.2 to null0.8 V and from null0.8 to null0.2 V. The above characteristics may be achieved if the ferromagnetic pinned layer is formed from Fe3O4 or at least one oxide or compound of Cr and Mn; the non-magnetic insulating layer is formed from at least one oxide of Sr, Ti, and Ta; or the soft magnetic free layer is a CoFe alloy containing 70-100 atom % of Co, the ferromagnetic pinned layer is a CoFe alloy containing 0-70 atom % of Co, and the non-magnetic insulating layer is formed from at least one oxide of Sr, Ti, and Ta.
Abstract:
Disclosed are a fast, highly-integrated and highly-reliable magnetoresistive random access memory (MRAM) and a semiconductor device which uses the MRAM. The semiconductor device performs the read-out operation of the MRAM using memory cells for storing information by using a change in magnetoresistance of a magnetic tunnel junction (MTJ) element with a high S/N ratio. Each memory cell includes an MTJ element and a bipolar transistor. The read-out operation is carried out by selecting a word line, amplifying a current flowing in the MTJ element of a target memory cell by the bipolar transistor and outputting the-amplified current to an associated read data line.
Abstract:
Disclosed are a fast, highly-integrated and highly-reliable magnetoresistive random access memory (MRAM) and a semiconductor device which uses the MRAM. The semiconductor device performs the read-out operation of the MRAM using memory cells for storing information by using a change in magnetoresistance of a magnetic tunnel junction (MTJ) element with a high S/N ratio. Each memory cell includes an MTJ element and a bipolar transistor. The read-out operation is carried out by selecting a word line, amplifying a current flowing in the MTJ element of a target memory cell by the bipolar transistor and outputting the amplified current to an associated read data line.
Abstract:
A recording disk has a surface provided with guide grooves for controlling the position of a recording head, and recording bits formed in the guide grooves for high-density recording. The recording bits have the shape of a tadpole in a plane. The width Ws of the recording bits is greater than the width Wg of the guide grooves. An AFM probe serving as a recording head travels along the guide grooves without running off the guide grooves. When a tip part of the AFM probe coincides with the recording bit, the tip part drops deep into the guide groove, whereby the recording bit is detected.