Abstract:
A solid-liquid separating method and system for separating a processing object into solid and liquid, is simplified by using fewer devices. A solid-liquid separating system includes a processing tank that houses a processing object, a first and a second heat exchanger, a material A supplying means, a collecting tank, a closed system including the first and second heat exchangers, a compressor, and an expansion valve, and a material B that circulates while a state is changed in this system. A material A that is gaseous at normal temperature and normal pressure, can dissolve oil when liquefied, and does not dissolve water is gasified in the first heat exchanger while being separated from the oil, is liquefied in the second heat exchanger, and the liquefied material A is supplied to the processing tank by the material A supplying means. The oil is collected in the tank from the first heat exchanger.
Abstract:
Provided is an air compressor which helps to attain a proper discharge air temperature and which is superior in energy saving property. There are provided an air line connecting an air compressor, an oil separator, and an after cooler; an oil circulation line connecting the air compressor, the oil separator, and an oil cooler; a bearing oil supply line connecting one end of an intermediate branching portion disposed at an intermediate point of the oil circulation line between the oil cooler and the air compressor to a bearing oil supply portion of the air compressor; an intermediate portion oil supply line connecting the other end of the intermediate branching portion to an intermediate oil supply portion of the air compressor; a branching line supplying oil to the bearing oil supply portion and the intermediate oil supply portion; a blower sending air to the oil cooler and the after cooler; a bypass line connecting one end of a bypass branching portion disposed at an intermediate point of the oil circulation line between the oil separator and the oil cooler to the downstream side of the oil cooler of the bearing oil supply line; and a control valve controlling the inflow amount of the lubricating oil to the bypass line.
Abstract:
A solid-liquid separation device performs dehydration or deoiling from a treated object using a substance A that is a gas at normal temperature and pressure and is capable of dissolving water and oil when liquefied. The separation device includes a substance B that circulates while generating phase change in a closed system, a compressor that compresses the substance B, a first heat exchanger that condenses substance B and evaporates of the substance A, an expansion valve that decompresses the condensed substance B, a second heat exchanger that evaporates substance B and condenses substance A, and a treatment tank wherein substance A is mixed with the treated object, substance A is evaporated while separated from the liquid in the first heat exchanger, and condensed in the second heat exchanger. The center of gravity of the first heat exchanger is lower than the second heat exchanger in a vertical direction.
Abstract:
An oil—cooled air compressor is provided with: an oil—cooled air compressor for compressing sucked-in air and discharging the compressed air; an oil separator for separating the compressed air and lubricating oil, which are discharged from the air compressor body; an oil cooler for cooling, by outside air, lubricating oil discharged from the oil separator; oil supply pipe passage for supplying lubricating oil, which is discharged from the oil cooler, to a bearing of the air compressor body and to an intermediate section in the process of compression by the air compressor; and an after-cooler for cooling, by outside air, air discharged from the oil separator. The oil-cooled air compressor in which the air compressor, the oil separator, the oil cooler, and the after-cooler are connected to supply high-pressure air to the outside of the compressor is provided with a vapor compression type refrigeration cycle.
Abstract:
The solid-liquid separator that uses the substance A capable of dissolving water and oil, and performs dehydration and deoiling from an object to be treated by bringing a mixture of water and a solid, oil and a solid, or water, oil and a solid that is an object to be treated, and the substance A in a liquid state into contact with each other, and subsequently evaporating the substance A, includes a substance B that circulates while causing change of state in a closed system, a compressor that compresses the substance B, a first heat exchanger that exchanges condensation heat of the substance B and evaporation heat of the substance A, an expansion valve that decompresses the substance B which is condensed, and a second heat exchanger that exchanges evaporation heat of the substance B and condensation heat of the substance A.
Abstract:
A refrigerant distributor includes an inlet pipe, a header pipe to which the inlet pipe has been connected and a plurality of refrigerant pipes connected to one end side of the header pipe which is opposite to the side that the inlet pipe is connected, below the inlet pipe in a vertical direction, and is configured such that a refrigerant which has flown into the header pipe through the inlet pipe is distributed into the plurality of refrigerant pipes. The header pipe is arranged such that a vertical upper side of the header pipe is inclined toward the one end side that the refrigerant pipes are connected. Thereby, it is possible to stably distribute the refrigerant to each refrigerant pipe while suppressing an increase in cost under flow rate conditions ranging from a rated operation condition to a low rotating speed operation condition.
Abstract:
A steam compression device (gas compression device) includes: a second gas-liquid separator (gas-liquid separator) that evaporates water to generate water vapor and separates the water vapor from the water; an exhaust heat recovery heat exchanger (heat recovery unit) that supplies the water heated by hot water to the second gas-liquid separator (gas-liquid separator); a compressor that compresses the water vapor supplied from the second gas-liquid separator (gas-liquid separator); and a superheater that heats the water vapor by heat exchange between the hot water supplied to the exhaust heat recovery heat exchanger (heat recovery unit) and the water vapor supplied from the second gas-liquid separator (gas-liquid separator) to the compressor, in which the hot water flows through the superheater and the exhaust heat recovery heat exchanger in this order.
Abstract:
Provided is an extraction method for extracting an extract from a mixture using liquefied gas that can dissolve the extract, the method facilitating extraction operations and enabling low cost operation. An extraction device that extracts a component dissolved in liquefied gas from material to be treated using continuous phase changes in the liquefied gas is characterized by being provided with: a compressor that feeds gas under pressure; a heat exchanger for generating liquefied gas by the gas flowing in a high temperature side flow path; a treatment tank into which the material to be treated is loaded and the liquefied gas flows; and a retention tank provided in series or in parallel to the flow path downstream of the high temperature side flow path in the heat exchanger.
Abstract:
An extracting apparatus includes: a first phase transition section that causes a phase transition of an extraction solvent from a gas to a liquid; a second phase transition section that causes a phase transition of the extraction solvent from a liquid to a gas; a treatment tank that stores a treated material, and receives an inflow of the extraction solvent that has been liquefied in the first phase transition section; a first valve that is provided between the second phase transition section and the treatment tank; and a second valve that is provided between the first phase transition section and the treatment tank. The second phase transition section is connected with a recovery valve.
Abstract:
In a refrigeration cycle device, a compressor, a heat exchanger serving as a condenser, an expansion valve, and a heat exchanger serving as an evaporator are connected in order through refrigerant piping to form a refrigeration cycle. The refrigeration cycle device includes an evaporation temperature sensor provided between the expansion valve and the exchanger serving as the to evaporator. The opening degree of the expansion valve is controlled such that an evaporation temperature detected by the evaporation temperature sensor reaches a control target value of the evaporation value. As a result, the refrigeration cycle device capable of achieving enhanced controllability while preventing liquid back to the compressor is provided.