Abstract:
A rotating machine drive system includes: a rotating machine that includes a plurality of windings; a phase current detecting circuit that detects a phase current to be supplied to the rotating machine; an inverter device that includes an inverter circuit that converts DC power from a DC power supply into AC power, and a control device that controls power conversion being performed by an inverter main circuit on the basis of the phase current detected by the phase current detecting circuit, the inverter device operating the rotating machine at a variable speed; and a winding switching device that switches connections of the plurality of windings in accordance with a command from the control device. In a case where the rotation zone of the rotating machine is to be changed, the control device stops the current supply from the inverter circuit to the rotating machine, and switches the rotation zone of the rotating machine from a low-speed rotation zone to a high-speed rotation zone, or from the high-speed rotation zone to the low-speed rotation zone, on condition that a line internal voltage induced by a field magnetic flux of the rotating machine is lower than the DC voltage of the DC power supply.
Abstract:
An object of the invention is to provide a power converter that can be reduced in size. To achieve this, a power converter according to the invention includes: water passages arranged radially from an assumed central axis, each being trapezoid-shaped in cross section; and power modules placed between the water passages such that each of the power modules is sandwiched from both surfaces thereof by the water passages. Each of the power modules has an output terminal and positive and negative terminals on an end face located in a centrifugal direction side with respect to the assumed central axis. Any of the power modules and an adjacent one of the power modules are set in a front-back inverted manner.
Abstract:
A rotating electrical machine includes a housing having an approximately cylindrical shape; a stator and a rotor that are accommodated in the housing; and a cooling frame that is provided on an outer circumferential surface of the housing and circulates a first liquid refrigerant, in which the cooling frame has a partially cylindrical shape. By setting the cooling frame to have the partially cylindrical shape, it is possible to obtain cooling structure capable of obtaining a reduction in size and weight while securing the strength.
Abstract:
A winding switching device switches parallel and series connections of windings of a rotating electric machine, and includes a plurality of electrodes that are connected to the windings and a power source, a movable portion in contact with the plurality of electrodes and includes a plurality of conductor portions, and an actuator that drives the movable portion. According to a contact state between the plurality of electrodes and the plurality of conductor portions, the windings are connected in parallel at a first position of the movable portion, and are connected in series at a second position of the movable portion. The electrodes include a first electrode connected to a first phase winding of the rotating electric machine in the plurality of windings, and a second electrode connected to a second phase winding. The first electrode and the second electrode are adjacent to each other, and form a neutral point.
Abstract:
An induction motor includes: a stator and a rotor arranged so as to face the stator via a void, the rotor including conductor bars in a plurality of slots formed by a plurality of teeth arranged so as to extend in the circumferential direction of a rotatably held rotor core, wherein the circumferential width of distal end portions of the slots on the radially outside of the rotor core are narrowed by distal end portion of the teeth on the radially outside of the rotor core, and the teeth are each formed with a projection protruding in an arcuate shape from the distal end of the tooth on the radially outside of the rotor core toward the conductor bar in each of the slots.
Abstract:
A rotary machine driving system includes: a rotary machine including a plurality of coils; an inverter device configured to operate the rotary machine at a variable speed, including a control device for controlling power conversion by an inverter circuit, and a coil switching device for switching a connection of the coils according to the control device. The control device commands the coil switching device to switch the connection of the coils when rotation of the rotary machine transitions between a low-speed rotation range and a high-speed rotation range due to acceleration and deceleration. A starting end and a terminal end of at least one set of coils per phase of the rotary machine are drawn out in a freely connectable state. The coil switching device includes at least one movable portion driven by one actuator.
Abstract:
A rotating electric machine includes a cooling frame. The cooling frame includes a flow passage through which the first liquid coolant circulates, a flow inlet connected to one end of the flow passage so as to make the first liquid coolant flow from the outside into the flow passage, and a flow outlet connected to the other end of the flow passage so as to make the first liquid coolant having flown through the flow passage flow to the outside. The machine is configured that, when the flow passage is divided into a front half portion closer to the flow inlet and a latter half portion closer to the flow outlet, the front half portion becomes a portion where the first liquid coolant mainly cools the second liquid coolant, and the latter half portion becomes a portion where the first liquid coolant mainly cools the gas coolant.