摘要:
In one embodiment, a first substrate includes a pixel electrode having a first main electrode in a belt-like shape extending along a first cross line direction which crosses at an acute angle in a counterclockwise direction with respect to an initial alignment direction of liquid crystal molecules, and a second main electrode in the belt-like shape extending along a second cross line direction which crosses at an acute angle in a clockwise direction with respect to the initial alignment direction of the liquid crystal molecules. A second substrate includes a counter electrode having a pair of third main electrodes in the belt-like shape arranged above a pair of regions sandwiching the first main electrode extending along a first cross line direction and a pair of fourth main electrodes in the belt-like shape arranged above a pair of regions sandwiching the second main electrode extending along the second cross line direction.
摘要:
In one embodiment, a first substrate is provided with first and second main pixel electrodes electrically connected each other extending along a first direction, respectively. A second substrate includes first to third main common electrodes electrically connected each other extending along the first direction, respectively. The first main pixel electrode is arranged between the first and second main common electrodes, and the second main pixel electrode is arranged between the second and third main common electrodes. Four inter-electrode distances are formed. One of the four inter-electrode distances is set to an optimal inter-electrode distance, and one of the four inter-electrode distances is different from at least one of the other three inter-electrode distances. Herein, the optimal inter-electrode distance is defined as follows: in a range of voltage which is applied between the electrodes, more than 90% of a peak transmissivity is obtained by the optimal inter-electrode distance.
摘要:
In one embodiment, a first substrate includes a gate line extending in a first direction, a source line extending in a second direction orthogonally crossing the first direction, a pixel electrode including a main pixel electrode extending in the second direction, and a first alignment film covering the pixel electrode. A second substrate includes a common electrode having a pair of main common electrodes arranged on both sides sandwiching the main pixel electrode and a second alignment film covering the common electrode. A liquid crystal layer is held between the first alignment film and the second alignment film and includes liquid crystal molecules. The liquid crystal layer is formed of materials having negative dielectric constant anisotropy, and the liquid crystal molecules are initially aligned substantially in parallel with the first direction when electric field is not impressed between the pixel electrode and the common electrode.
摘要:
In one embodiment, a first substrate is provided with first and second main pixel electrodes electrically connected each other extending along a first direction, respectively. A second substrate includes first to third main common electrodes electrically connected each other extending along the first direction, respectively. The first main pixel electrode is arranged between the first and second main common electrodes, and the second main pixel electrode is arranged between the second and third main common electrodes. Four inter-electrode distances are formed. One of the four inter-electrode distances is set to an optimal inter-electrode distance, and one of the four inter-electrode distances is different from at least one of the other three inter-electrode distances. Herein, the optimal inter-electrode distance is defined as follows: in a range of voltage which is applied between the electrodes, more than 90% of a peak transmissivity is obtained by the optimal inter-electrode distance.
摘要:
In one embodiment, a first substrate includes a gate line extending in a first direction, a source line extending in a second direction orthogonally crossing the first direction, a pixel electrode including a main pixel electrode extending in the second direction, and a first alignment film covering the pixel electrode. A second substrate includes a common electrode having a pair of main common electrodes arranged on both sides sandwiching the main pixel electrode and a second alignment film covering the common electrode. A liquid crystal layer is held between the first alignment film and the second alignment film and includes liquid crystal molecules. The liquid crystal layer is formed of materials having negative dielectric constant anisotropy, and the liquid crystal molecules are initially aligned substantially in parallel with the first direction when electric field is not impressed between the pixel electrode and the common electrode.
摘要:
A liquid crystal display device includes a first substrate including a T-shaped pixel electrode including a strip-shaped first main electrode positioned midway between a first source line and a second source line, and a strip-shaped sub-electrode, a second substrate including a counter-electrode which includes a strip-shaped second main electrode positioned above the first source line and the second source line, and a liquid crystal layer, wherein when an inter-electrode distance between the first main electrode and the second main electrode is L and a cell gap is GP, a formed angle Θ, which is expressed by a relationship of tan Θ=GP/L, is greater than a pre-tilt angle α of a liquid crystal molecule.
摘要翻译:一种液晶显示装置,包括:第一基板,包括T形像素电极,所述T形像素电极包括位于第一源极线和第二源极线之间的中间的带状第一主电极和带状子电极;第二基板,包括 对置电极,其包括位于第一源极线和第二源极线之上的带状第二主电极和液晶层,其中当第一主电极和第二主电极之间的电极间距离为L 并且单元间隙为GP,由tanθ= GP / L的关系表示的形成角度θ大于液晶分子的预倾角α。
摘要:
A liquid crystal display device includes a pair of substrates, a liquid crystal material sandwiched between the pair of substrates, a shield area disposed on the outer periphery of a display area, and an outer edge sealing member disposed on the further outer periphery than the shield area and formed except for the liquid crystal inlet. Particularly, in this liquid crystal display device, a shield pattern comprising a resin of a predetermined thickness and a color filter thinner than the predetermined thickness coexist with each other on a plane in the shield area in the vicinity of the inlet.
摘要:
In an electooptical liquid crystal device comprising an OCB mode liquid crystal cell and an optically anisotropic element compensating a viewing angle characteristics of the cell, the optically anisotropic element satisfies the elliptical coefficient Z of the index ellipsoid of the optically anisotropic element, 7.ltoreq.Z.ltoreq.10, if Z=(ndx-ndz)/(ndx-ndy), where ndx, ndy and ndz represent the components in x, y and z directions of the products of the refractive indice n of optically anisotropic element and the thickness of the optically anisotropic element, when the optically anisotropic element is combined with the bend-aligned liquid crystal cell as the electrooptical liquid crystal device.
摘要翻译:在包含OCB模式液晶单元和补偿单元的视角特性的光学各向异性元件的电光液晶装置中,光学各向异性元件满足光学各向异性元件的折射椭圆体的椭圆系数Z, Z =(ndx-ndz)/(ndx-ndy),其中ndx,ndy和ndz表示光学各向异性元件的折射率n的乘积的x,y和z方向上的分量, 当光学各向异性元件与作为电光学液晶装置的弯曲取向液晶单元组合时,光学各向异性元件的厚度。
摘要:
In a liquid crystal display device having a driving liquid crystal cell interposed between two polarizers 1 and 4, the cell having a liquid crystal layer 3e held between two substrates 3a and 3b, the layer having a twisted molecular alignment when no voltage is applied, and the liquid crystal cell performing optical control, using the optical anisotropy of liquid crystal, there is provided with an optical anisotropic element 2 between the polarizer and the driving liquid crystal cell, the optical anisotropic element 2 comprising an optical anisotropic substance layer 2c in which the optical rotatory power slanted to the normal of the substrates 3a and 3b is greater than the optical rotatory power in the direction of the normal of the substrate. The angle of the optical axis of the optical anisotropic element 2 varies continuously or in stages in the direction of layer thickness of the optical anisotropic element as against the surface of the optical anisotropic element.
摘要:
A liquid crystal display device comprises an array substrate having first and second pixel electrodes arranged adjacent each other and a counter substrate having a counter electrode opposing to the first and second pixel electrodes. First and second slits are formed on the counter electrode opposing to the first and second pixel electrode so as to cross the first and second pixel electrode, respectively. The counter electrode is separated into a first counter electrode portion and a second counter electrode portion by the first and second slits. A connecting counter electrode portion is arranged between the first and second slits to connect the first and second counter electrode portions. A columnar spacer is arranged between the first and second slits opposing to the connecting counter electrode portion to form a cell gap between the array substrate and the counter substrate.