摘要:
An interactive bid evaluation system (method and storage medium) for a combinatorial auction, includes a display for scaling a plurality of bids and items, on a display window.
摘要:
Automated mapping of part numbers associated with parts in a bill of materials (BOM) submitted by a BOM originator to internal part numbers assigned to those parts by a BOM receiver is performed by one or more computers connected to one or more networks through one or more network interfaces. A first receive component receives one or more data sets containing historical data on bills of materials received in the past by the BOM receiver. A second receive component receives one or more data sets containing known mappings between internal part numbers used by the BOM receiver, and part numbers used by various BOM originators. A third receive component receives one or more data sets containing information of various parameters and their values describing the parts to which the BOM receiver has assigned internal part numbers. A fourth receive component receives one or more methods of automatically learning models for predicting internal part numbers from the above mentioned historical BOM data, mapping data and part parametric data. A learning component learns the models from the data. A fifth receive component receives a BOM from a requesting process. The BOM has one or more parts with a missing internal part number. A mapping component applies the learned models to the received BOM to automatically determine internal part numbers for all unmapped BOM originator part numbers. A release process assigns internal part numbers to all unmapped parts in the BOM and releases the BOM to the requesting process.
摘要:
An automated method optimally designs plates to satisfy an order book at a steel plant so as to maximize the yield of the plates designed while using capacity fully to reduce the production of surplus slabs or plates, and satisfy order deadlines. Our method consists of four main components: (1) mother plate design, (2) slab design, (3) cast design, and (4) material allocation. A column generation framework for mother plate design is used where the problem is decomposed into a master problem and a subproblem. The master problem is used to evaluate packing patterns that should be used to fulfill the order book and the subproblem generates potential one-dimensional and two-dimensional feasible packing patterns as candidates to be evaluated by the master problem. The solution to the master problem produces a list of mother plates that need to be produced. These mother plates are transformed into candidate slabs, which are represented via an interval graph. The maximal cliques in the interval graph—maximal subsets of slabs which can be grouped together to form casts—are enumerated to generate candidate casts, from which redesign information is sent to the plate/slab design processes. The cast design process is integrated with the plate design/slab design processes in the sense that information is passed from the plate/slab design processes to the cast design process and vice versa. Finally, our method has a material allocation component to assign order plates to inventory mother-plates and slabs.
摘要:
There are provided a method and system for optimizing of a long-term electricity resource plan. The system obtains a capital costs component value including capital costs for emission abatement retrofits at an existing power plant and a new power plant over a period of time. The system obtains a fuel costs component value including the sum of fuel utilization of all generating units in the existing power plant and new power plant over the period of time. The system obtains an emission costs component value including emission allowance costs and emission violation costs in the period of time. The system adds the capital costs component value, the fuel costs component value and the emission costs component value to compute a net present value that meets emission constraints.
摘要:
A method and system for identifying and quantifying a risk is disclosed. In one embodiment, the method comprises forming a two-dimensional risk matrix, wherein a first dimension of the matrix comprises risk variable categories and a second dimension comprises standard business processes, placing a risk variable onto the two-dimensional risk matrix, wherein the risk variable is categorized by one of the risk variable categories and one of the standard business processes, connecting the variable node with another risk variable in the two-dimensional risk matrix, and applying a learning method to the two-dimensional risk matrix to compose a risk model to use for quantifying the risk. The system comprises a processor operable to perform the steps embodied by the method.
摘要:
A business process modeling framework is used for data quality analysis. The modeling framework represents the sources of transactions entering the information processing system, the various tasks within the process that manipulate or transform these transactions, and the data repositories in which the transactions are stored or aggregated. A subset of these tasks is associated as the potential error introduction sources, and the rate and magnitude of various error classes at each such task are probabilistically modeled. This model can be used to predict how changes in transactions volumes and business processes impact data quality at the aggregate level in the data repositories. The model can also account for the presence of error correcting controls and assess how the placement and effectiveness of these controls alter the propagation and aggregation of errors. Optimization techniques are used for the placement of error correcting controls that meet target quality requirements while minimizing the cost of operating these controls. This analysis also contributes to the development of business “dashboards” that allow decision-makers to monitor and react to key performance indicators (KPIs) based on aggregation of the transactions being processed. Data quality estimation in real time provides the accuracy of these KPIs (in terms of the probability that a KPI is above or below a given value), which may condition the action undertaken by the decision-maker.