Abstract:
A method of fault-tolerant process control includes providing a network process control system in an industrial processing facility (IPF) including a plant-wide network coupling a server to computing platforms each including computing hardware and memory hosting a software application for simultaneously supporting a process controller and another process controller or an I/O gateway. The computing platforms are coupled together by a private path redundancy network for providing a hardware resource pool. At least some of the computing platforms are directly coupled by an I/O mesh network to a plurality of I/O devices to field devices that are coupled to processing equipment. Upon detecting at least one failing device in the hardware resource pool, over the private path redundancy network a backup is placed into service for the failing device from the another process controller or I/O gateway that is at another of the computing platforms in the hardware resource pool.
Abstract:
A method of fault-tolerant process control includes providing a network process control system in an industrial processing facility (IPF) including a plant-wide network coupling a server to computing platforms each including computing hardware and memory hosting a software application for simultaneously supporting a process controller and another process controller or an I/O gateway. The computing platforms are coupled together by a private path redundancy network for providing a hardware resource pool. At least some of the computing platforms are directly coupled by an I/O mesh network to a plurality of I/O devices to field devices that are coupled to processing equipment. Upon detecting at least one failing device in the hardware resource pool, over the private path redundancy network a backup is placed into service for the failing device from the another process controller or I/O gateway that is at another of the computing platforms in the hardware resource pool.
Abstract:
An apparatus includes a first interface configured to communicate over a first industrial process control network using a first protocol. The apparatus also includes a second interface configured to communicate over a second industrial process control network using a second protocol. The apparatus further includes a third interface configured to communicate with at least one supervisory device over a third network. In addition, the apparatus includes at least one processing device configured to provide concurrent access for the at least one supervisory device to process control devices coupled to the first and second industrial process control networks during a migration of process control devices that use the first protocol to process control devices that use the second protocol.
Abstract:
An apparatus includes a first interface configured to communicate over a first industrial process control network using a first protocol. The apparatus also includes a second interface configured to communicate over a second industrial process control network using a second protocol. The apparatus further includes a third interface configured to communicate with at least one supervisory device over a third network. In addition, the apparatus includes at least one processing device configured to provide concurrent access for the at least one supervisory device to process control devices coupled to the first and second industrial process control networks during a migration of process control devices that use the first protocol to process control devices that use the second protocol.