Abstract:
A scalable industrial data ingestion and analysis architecture integrates and collects data from multiple diverse sources at one or more industrial facilities. Data sources can include plant-level industrial devices and higher-level business systems. The data can be integrated and collected from multiple sources at an on-premise edge or gateway device, which sends the data to event queues on the cloud platform. The data queues orchestrate and store the data on cloud storage, and an analytics layer performs business analytics or other types of analysis on the stored data to produce various outcomes. Similar analytic platforms can also be implemented at the device level, and analytic functions can be scaled between the device level and higher levels in accordance with the scope of a given analytic function.
Abstract:
A scalable industrial data ingestion and analysis architecture integrates and collects data from multiple diverse sources at one or more industrial facilities. Data sources can include plant-level industrial devices and higher-level business systems. The data can be integrated and collected from multiple sources at an on-premise edge or gateway device, which sends the data to event queues on the cloud platform. The data queues orchestrate and store the data on cloud storage, and an analytics layer performs business analytics or other types of analysis on the stored data to produce various outcomes. Similar analytic platforms can also be implemented at the device level, and analytic functions can be scaled between the device level and higher levels in accordance with the scope of a given analytic function.
Abstract:
An apparatus includes a first interface configured to communicate over a first industrial process control network using a first protocol. The apparatus also includes a second interface configured to communicate over a second industrial process control network using a second protocol. The apparatus further includes a third interface configured to communicate with at least one supervisory device over a third network. In addition, the apparatus includes at least one processing device configured to provide concurrent access for the at least one supervisory device to process control devices coupled to the first and second industrial process control networks during a migration of process control devices that use the first protocol to process control devices that use the second protocol.
Abstract:
A remote access gateway configurable control system. There may be a series of control commands to set or adjust a gateway device's running parameters and modify the behavior of the device or start process action. There may be configuration commands for remote control of the device and server commands for unattended devices.
Abstract:
A programmable logic controller (PLC) protocol converter is disclosed that allows a supervisory control and data acquisition (SCADA) system to effectively communicate with a PLC device using a desired communications protocol, particularly in cases where the PLC device does not “speak” the desired communications protocol. A first thread may be configured to continually read PLC addresses, one at a time, using a communications protocol understood by the PLC device. The first thread may store the data values in the shared data array within program memory. Thus, the first thread exposes data from the PLC device, as specified in the configuration file. At the same time, a second thread may be configured to serve the data in the shared data array according to a second communications protocol, e.g., to the SCADA system.
Abstract:
A scalable industrial data ingestion and analysis architecture integrates and collects data from multiple diverse sources at one or more industrial facilities. Data sources can include plant-level industrial devices and higher-level business systems. The data can be integrated and collected from multiple sources at an on-premise edge or gateway device, which sends the data to event queues on the cloud platform. The data queues orchestrate and store the data on cloud storage, and an analytics layer performs business analytics or other types of analysis on the stored data to produce various outcomes. Similar analytic platforms can also be implemented at the device level, and analytic functions can be scaled between the device level and higher levels in accordance with the scope of a given analytic function.
Abstract:
The invention relates to a method and a bus system for the interchange of device-specific data between fieldbus slaves of a first fieldbus and a fieldbus master of a second fieldbus, wherein the first fieldbus is connected for communication to a common Ethernet network via a first gateway and the second fieldbus is connected for communication to a common Ethernet network via a second gateway, wherein the communication via the Ethernet network occurs according to the client-server communication principle, wherein the first gateway reacts on the network side as a fieldbus master and on the Ethernet side as a web service server, and wherein the second gateway reacts on the fieldbus side as a fieldbus slave and on the Ethernet side as a web service client.
Abstract:
A remote access gateway configurable control system. There may be a series of control commands to set or adjust a gateway device's running parameters and modify the behavior of the device or start process action. There may be configuration commands for remote control of the device and server commands for unattended devices.
Abstract:
A network unit in a programmable controller of a building block mutually connects an information system network and a control system network. The network unit includes transfer analyzing units that judge to which of interface units received data received from the information system network and the control system network should be allocated. Moreover, received data that needs to be transferred is converted into predetermined data by conversion processing units included in the networks and output to the information system network or the control system network without being transmitted to a system bus.
Abstract:
A plastics processing machine can be operated more flexibly by providing the controller of the plastic-processing machine with a wireless communication device that can exchange status and operating information with a remote input/output device via a communication network. The remote input/output device can be, for example, a mobile telephone or a handheld computer with integrated wireless capabilities.