Abstract:
Systems and methods for isolated sensor device protection are provided. In one embodiment, an isolated sensor device comprises: a housing having an isolation chamber; an isolator sealed within the isolation chamber; an inertial sensor assembly sealed within the isolation chamber, the inertial sensor assembly coupled to an inner surface of the isolation chamber by the isolator; and at least one progressive impact interface applied to a periphery of the inertial sensor assembly, wherein the at least one progressive impact interface extends outward from the inertial sensor assembly towards the inner surface.
Abstract:
A micro-electro-mechanical systems (MEMS) device comprises at least one proof mass configured to have a first voltage and a motor motion in a first horizontal direction. At least one sense plate is separated from the proof mass by a sense gap, with the sense plate having an inner surface facing the proof mass and a second voltage different than the first voltage. A set of stop structures are on the inner surface of the sense plate and are electrically isolated from the sense plate. The stop structures are configured to prevent contact of the inner surface of the sense plate with the proof mass in a vertical direction. The stop structures have substantially the same voltage as that of the proof mass, and are dimensioned to minimize energy exchange upon contact with the proof mass during a shock or acceleration event.
Abstract:
A method and system for providing gyroscope bias self-calibration are described herein. The method comprises powering on one or more gyroscopes; after a predetermined first period of time, and upon determining that the one or more gyroscopes is stationary, measuring input rates of rotation during a predetermined second period of time; and determining an average rate of rotation for each gyroscope channel based upon the measured input rates of rotation during the predetermined second period of time. After determining the average rate of rotation and after the predetermined second period of time, the method further comprises commencing additional measurements by the one or more gyroscopes; determining calibrated gyroscope measurements by subtracting the average rate of rotation from each of the additional measurements; and providing, at the output of the one or more gyroscopes, the calibrated gyroscope measurements.
Abstract:
A method of controlling exposed glass charging in a micro-electro-mechanical systems (MEMS) device is disclosed. The method includes providing a MEMS device comprising a proof mass positioned apart from at least one sense plate and at least one outboard metallization layer, wherein at least one conductive glass layer is coupled to the sense plate and the outboard metallization layer, the conductive glass layer including at least one exposed glass portion near the proof mass; and applying a first voltage to the sense plate and a second voltage to the outboard metallization layer. The first voltage is separated from the second voltage by a predetermined voltage level such that the exposed glass portion has an average voltage corresponding to a voltage midway between the first voltage and the second voltage.
Abstract:
A method and system for providing gyroscope bias self-calibration are described herein. The method comprises powering on one or more gyroscopes; after a predetermined first period of time, and upon determining that the one or more gyroscopes is stationary, measuring input rates of rotation during a predetermined second period of time; and determining an average rate of rotation for each gyroscope channel based upon the measured input rates of rotation during the predetermined second period of time. After determining the average rate of rotation and after the predetermined second period of time, the method further comprises commencing additional measurements by the one or more gyroscopes; determining calibrated gyroscope measurements by subtracting the average rate of rotation from each of the additional measurements; and providing, at the output of the one or more gyroscopes, the calibrated gyroscope measurements.
Abstract:
A method of controlling exposed glass charging in a micro-electro-mechanical systems (MEMS) device is disclosed. The method includes providing a MEMS device comprising a proof mass positioned apart from at least one sense plate and at least one outboard metallization layer, wherein at least one conductive glass layer is coupled to the sense plate and the outboard metallization layer, the conductive glass layer including at least one exposed glass portion near the proof mass; and applying a first voltage to the sense plate and a second voltage to the outboard metallization layer. The first voltage is separated from the second voltage by a predetermined voltage level such that the exposed glass portion has an average voltage corresponding to a voltage midway between the first voltage and the second voltage.
Abstract:
One embodiment is directed towards an inertial measurement unit (IMU) for measuring an input rate of rotation about an input axis. The IMU includes a first three dimensional gyroscope disposed such that a first axis of its three axes is oriented at a skew angle in degrees away from a reference plane, wherein the reference plane is normal to the input axis. The IMU also includes one or more processing devices coupled to the first gyroscope. The IMU also includes one or more data storage devices coupled to the one or more processing devices, the one or more data storage devices including instructions which, when executed by the one or more processing devices, cause the one or more processing devices to calculate the input rate of rotation based on dividing a sensed rate of rotation about the first axis by the sine of the skew angle.
Abstract:
A hybrid inertial measurement unit (IMU) comprises: a low frequency (LF) sensor providing a first signal containing information for a first parameter of the hybrid IMU; a shock resistant (SR) sensor providing a second signal containing information for the first parameter, wherein the SR sensor is resistant to destabilization during a destabilizing operational period; and a processor, wherein the processor further comprises: a weighting factor computation module to compute a weight to be applied to the first signal and to compute a weight to be applied to the second signal; a LF weighting module to apply the computed weight to the first signal to create a weighted first signal; a SR weighting module to apply the computed weight to the second signal to create a weighted second signal; and a compensator to combine the weighted first signal and the weighted second signal to create a compensated signal containing information for the first parameter.
Abstract:
Systems and methods for isolated sensor device protection are provided. In one embodiment, an isolated sensor device comprises: a housing having an isolation chamber; an isolator sealed within the isolation chamber; an inertial sensor assembly sealed within the isolation chamber, the inertial sensor assembly coupled to an inner surface of the isolation chamber by the isolator; and at least one progressive impact interface applied to a periphery of the inertial sensor assembly, wherein the at least one progressive impact interface extends outward from the inertial sensor assembly towards the inner surface.
Abstract:
A hybrid inertial measurement unit (IMU) comprises: a low frequency (LF) sensor providing a first signal containing information for a first parameter of the hybrid IMU; a shock resistant (SR) sensor providing a second signal containing information for the first parameter, wherein the SR sensor is resistant to destabilization during a destabilizing operational period; and a processor, wherein the processor further comprises: a weighting factor computation module to compute a weight to be applied to the first signal and to compute a weight to be applied to the second signal; a LF weighting module to apply the computed weight to the first signal to create a weighted first signal; a SR weighting module to apply the computed weight to the second signal to create a weighted second signal; and a compensator to combine the weighted first signal and the weighted second signal to create a compensated signal containing information for the first parameter.