摘要:
A method of manufacturing a flexible display device, the method including depositing a separation layer on a supporting substrate; depositing a display panel on the separation layer; cutting the display panel to have a predetermined shape; cutting the supporting substrate and the separation layer to have a wider area than an area where the display panel, that is cut with the predetermined shape, contacts the supporting substrate and the separate layer; and separating the separate layer and the display panel from each other.
摘要:
A thin film deposition apparatus that may be easily manufactured, that may be easily applied to manufacture large-sized display devices on a mass scale, and that improves manufacturing yield and deposition efficiency, and a method of manufacturing an organic light-emitting display device by using the thin film deposition apparatus are disclosed. The thin film deposition apparatus for forming a thin film on a substrate, the thin film deposition apparatus including: a magnet disposed on a first surface of the substrate; a patterning wheel disposed on a second surface opposite to the first surface of the substrate, rotatable around a rotation axis, and including a plurality of grooves along a peripheral surface; and a patterning wire including a plurality of blockers having shapes corresponding to the plurality of grooves of the patterning wheel, and windable to the patterning wheel.
摘要:
An OLED apparatus including a substrate with a lower active layer thereon and including an oxide semiconductor for generating current in response to light; an etching prevention layer on an upper portion of the lower active layer and including a contact hole; a source/drain electrode on the etching prevention layer and electrically connected to the lower active layer through the contact hole; an upper charging electrode on the etching prevention layer and overlapping the lower active layer; a light emitting layer contacting the upper charging electrode for generating light; and a cathode electrode facing the upper charging electrode, wherein the light emitting layer is configured to be driven and emit light in response to a driving voltage applied to the upper charging electrode, and the lower active layer is configured to store current in the oxide semiconductor in response to the driving voltage applied to the upper charging electrode.
摘要:
The present invention relates to an organic light emitting device including a substrate, an insulating layer disposed on the substrate, a first electrode disposed on the insulating layer, an organic light emitting member disposed on the first electrode, and a second electrode disposed on the organic light emitting member. The insulating layer includes a furrow corresponding to at least one edge of the first electrode, and at least a portion of the second electrode is disposed in the furrow.
摘要:
A thin film charged body sensor for sensing a contact and/or non-contact movement of a charged body based on an electric field of the charged body. The thin film charged body sensor may include a substrate, a first thin film transistor unit on the substrate, and including a gate layer, an active layer insulated from the gate layer, and source/drain layers insulated from the gate layer and connected to the active layer; and a thin film antenna unit on the substrate, and including a first film including a conductive material electrically connected to the gate layer, the thin film antenna unit adapted to generate an input current in response to an electric field of a charged body.
摘要:
According to an aspect of the present invention, there is provided a thin-film transistor (TFT) sensor, including a bottom gate electrode on a substrate, an insulation layer on the bottom gate electrode, an active layer in a donut shape on the insulation layer, the active layer including a channel through which a current generated by a charged body flows, an etch stop layer on the active layer, the etch stop layer including a first contact hole and a second contact hole, and a source electrode and a drain electrode burying the first and second contact holes, the source and drain electrodes being disposed on the etch stop layer so as to face each other.
摘要:
A nonvolatile memory device includes a liner covering a sidewall and bottom of a trench that defines an active field in a substrate and a field isolation film disposed on the liner which fills the trench. The nonvolatile memory device further includes a floating gate disposed on the active field having an edge of which covers the liner, a tunnel insulation film interposed between the active field and the floating gate and a charge diffusion barrier interposed between the liner and the floating gate.
摘要:
A touch sensor and an organic light-emitting display including the sensor are disclosed. In one embodiment, the touch sensor includes i) a substrate, ii) a sensing unit formed on or over the substrate and containing hydrogen ions, iii) a touch sensor active layer formed on or above the sensing unit and iv) a touch sensor source electrode and a touch sensor drain electrode that are electrically connected to the touch sensor active layer. The touch sensor further includes a protective layer covering the touch sensor source electrode and the touch sensor drain electrode, and an opposite electrode formed on the protective layer, wherein at least part of the opposite electrode is formed substantially directly above the touch sensor active layer.
摘要:
A method of manufacturing an organic light emitting diode (OLED) display, the method including forming a frit adhesive layer on an outer edge portion of a display substrate; forming a mold-releasing layer on a support substrate; attaching the frit adhesive layer of the display substrate on the mold-releasing layer of the support substrate; forming an organic light emitting member on the display substrate; and separating a display portion of the display substrate from the mold-releasing layer by cutting an outer edge portion of the display substrate.
摘要:
An organic light emitting diode display includes a substrate. A control electrode is on the substrate. A gate insulating film covers the control electrode. An input electrode and an output electrode are on the gate insulating film and face each other. An oxide semiconductor is between the input electrode and the output electrode and on the control electrode. A pixel electrode is on portions of the edges of the output electrode and is electrically connected. An organic light emitting member is on the pixel electrode. A common electrode is on the organic light emitting member. The oxide semiconductor and the pixel electrode may be of the same layer.