摘要:
A microphone-array-based speech recognition system using a blind source separation (BBS) and a target speech extraction method in the system are provided. The speech recognition system performs an independent component analysis (ICA) to separate mixed signals input through a plurality of microphone into sound-source signals, extracts one target speech spoken for speech recognition from the separated sound-source signals by using a Gaussian mixture model (GMM) or a hidden Markov Model (HMM), and automatically recognizes a desired speech from the extracted target speech. Accordingly, it is possible to obtain a high speech recognition rate even in a noise environment.
摘要:
A microphone-array-based speech recognition system using a blind source separation (BBS) and a target speech extraction method in the system are provided. The speech recognition system performs an independent component analysis (ICA) to separate mixed signals input through a plurality of microphone into sound-source signals, extracts one target speech spoken for speech recognition from the separated sound-source signals by using a Gaussian mixture model (GMM) or a hidden Markov Model (HMM), and automatically recognizes a desired speech from the extracted target speech. Accordingly, it is possible to obtain a high speech recognition rate even in a noise environment.
摘要:
An apparatus for evaluating the performance of speech recognition includes a speech database for storing N-number of test speech signals for evaluation. A speech recognizer is located in an actual environment and executes the speech recognition of the test speech signals reproduced using a loud speaker from the speech database in the actual environment to produce speech recognition results. A performance evaluation module evaluates the performance of the speech recognition by comparing correct recognition results answers with the speech recognition results.
摘要:
An apparatus for evaluating the performance of speech recognition includes a speech database for storing N-number of test speech signals for evaluation. A speech recognizer is located in an actual environment and executes the speech recognition of the test speech signals reproduced using a loud speaker from the speech database in the actual environment to produce speech recognition results. A performance evaluation module evaluates the performance of the speech recognition by comparing correct recognition results answers with the speech recognition results.
摘要:
A method for separating a sound source from a mixed signal, includes Transforming a mixed signal to channel signals in frequency domain; and grouping several frequency bands for each channel signal to form frequency clusters. Further, the method for separating the sound source from the mixed signal includes separating the frequency clusters by applying a blind source separation to signals in frequency domain for each frequency cluster; and integrating the spectrums of the separated signal to restore the sound source in a time domain wherein each of the separated signals expresses one sound source.
摘要:
A method for separating a sound source from a mixed signal, includes Transforming a mixed signal to channel signals in frequency domain; and grouping several frequency bands for each channel signal to form frequency clusters. Further, the method for separating the sound source from the mixed signal includes separating the frequency clusters by applying a blind source separation to signals in frequency domain for each frequency cluster; and integrating the spectrums of the separated signal to restore the sound source in a time domain wherein each of the separated signals expresses one sound source.
摘要:
Method of the present invention may include receiving speech feature vector converted from speech signal, performing first search by applying first language model to the received speech feature vector, and outputting word lattice and first acoustic score of the word lattice as continuous speech recognition result, outputting second acoustic score as phoneme recognition result by applying an acoustic model to the speech feature vector, comparing the first acoustic score of the continuous speech recognition result with the second acoustic score of the phoneme recognition result, outputting first language model weight when the first coustic score of the continuous speech recognition result is better than the second acoustic score of the phoneme recognition result and performing a second search by applying a second language model weight, which is the same as the output first language model, to the word lattice.
摘要:
Method of the present invention may include receiving speech feature vector converted from speech signal, performing first search by applying first language model to the received speech feature vector, and outputting word lattice and first acoustic score of the word lattice as continuous speech recognition result, outputting second acoustic score as phoneme recognition result by applying an acoustic model to the speech feature vector, comparing the first acoustic score of the continuous speech recognition result with the second acoustic score of the phoneme recognition result, outputting first language model weight when the first coustic score of the continuous speech recognition result is better than the second acoustic score of the phoneme recognition result and performing a second search by applying a second language model weight, which is the same as the output first language model, to the word lattice.
摘要:
A noise cancellation apparatus includes a noise estimation module for receiving a noise-containing input speech, and estimating a noise therefrom to output the estimated noise; a first Wiener filter module for receiving the input speech, and applying a first Wiener filter thereto to output a first estimation of clean speech; a database for storing data of a Gaussian mixture model for modeling clean speech; and an MMSE estimation module for receiving the first estimation of clean speech and the data of the Gaussian mixture model to output a second estimation of clean speech. The apparatus further includes a final clean speech estimation module for receiving the second estimation of clean speech from the MMSE estimation module and the estimated noise from the noise estimation module, and obtaining a final Wiener filter gain therefrom to output a final estimation of clean speech by applying the final Wiener filter gain.
摘要:
An utterance verification method for an isolated word N-best speech recognition result includes: calculating log likelihoods of a context-dependent phoneme and an anti-phoneme model based on an N-best speech recognition result for an input utterance; measuring a confidence score of an N-best speech-recognized word using the log likelihoods; calculating distance between phonemes for the N-best speech-recognized word; comparing the confidence score with a threshold and the distance with a predetermined mean of distances; and accepting the N-best speech-recognized word when the compared results for the confidence score and the distance correspond to acceptance.