摘要:
An improved interconnect structure and method of making such a device The improved interconnect electrically connects two otherwise separate areas on a semiconductor wafer. The interconnect preferably uses a copper conductor disposed within a trench and via structure formed in a low-k hybrid dielectric layer using a dual damascene process. Each contact region is served by a plurality of vias, each in communication with the trench conductor portion. The entry from the trench to the via is rounded for at least one and preferably all of the via structures.
摘要:
Alignment methods of IC device substrates. A first IC device substrate has a first front side for defining a plurality of first IC features, a first backside opposite the first front side, and a first alignment pattern formed on the first front side or the first backside. A second IC device substrate has a second front side for defining a plurality of second IC features, a second backside opposite the second front side, and a second alignment pattern formed on the second front side or the second backside. A first optical detector and a second optical detector are applied to detect the first and second alignment patterns, so as to align the first and second IC device substrates. Specifically, the first and second alignment patterns face toward the first and second optical detectors in opposite directions.
摘要:
Alignment methods of IC device substrates. A first IC device substrate has a first front side for defining a plurality of first IC features, a first backside opposite the first front side, and a first alignment pattern formed on the first front side or the first backside. A second IC device substrate has a second front side for defining a plurality of second IC features, a second backside opposite the second front side, and a second alignment pattern formed on the second front side or the second backside. A first optical detector and a second optical detector are applied to detect the first and second alignment patterns, so as to align the first and second IC device substrates. Specifically, the first and second alignment patterns face toward the first and second optical detectors in opposite directions.
摘要:
Alignment methods of IC device substrates. A first IC device substrate has a first front side for defining a plurality of first IC features, a first backside opposite the first front side, and a first alignment pattern formed on the first front side or the first backside. A second IC device substrate has a second front side for defining a plurality of second IC features, a second backside opposite the second front side, and a second alignment pattern formed on the second front side or the second backside. A first optical detector and a second optical detector are applied to detect the first and second alignment patterns, so as to align the first and second IC device substrates. Specifically, the first and second alignment patterns face toward the first and second optical detectors in opposite directions.
摘要:
An improved interconnect structure and method of making such a device. The improved interconnect electrically connects two otherwise separate areas on a semiconductor wafer. The interconnect preferably uses a copper conductor disposed within a trench and via structure formed in a low-k hybrid dielectric layer using a dual damascene process. Each contact region is served by a plurality of vias, each in communication with the trench conductor portion. The entry from the trench to the via is rounded for at least one and preferably all of the via structures.
摘要:
The present invention provides a method of fabricating a tungsten (W) plug 36 contact to a substrate using a selective W CVD Process with a self-aligned W-Silicide Barrier layer 34. The method comprises the steps of: forming first insulating layer 20 over a silicon semiconductor substrate 10; forming a first (contact) opening 24 in the first insulating layer 20 exposing the surface of the substrate; selectively growing a thin first tungsten layer 30 over the exposed substrate surface; rapidly thermally annealing the substrate forming a thin first tungsten silicide layer 34 from the thin first tungsten layer 30; selectively depositing a tungsten plug 36 over the first thin tungsten silicide layer 34 substantially filling the first opening 36 thereby forming a W plug contact. The RTA/W silicide layer 34 lowers the contact resistance, increases the adhesion and facilitates the selective deposition of the W plug 36.
摘要:
An improved and new process for fabricating a planarized dual damascene contact hole and trench structure, wherein the contact holes have tapered sidewalls, has been developed. The dual damascene contact hole and trench are formed in a three layer insulator structure, in which the middle layer is a doped silicon oxide having a lower reflow temperature than the undoped silicon oxide layers forming the top and bottom layers. The contact holes are etched through the doped silicon oxide layer and the bottom undoped silicon oxide layer. The trenches are etched through the top undoped silicon oxide layer. After etching tapered sidewalls are formed at the contact holes by reflow of the doped silicon oxide through which the holes are etched.
摘要:
A new method of tungsten plug metallization using a silicide glue layer is described. Semiconductor device structures are provided in and on a semiconductor substrate. An insulating layer is provided covering the semiconductor device structures wherein a contact opening is made through the insulating layer to one of the semiconductor device structures. A silicide layer is deposited conformally over the surface of the insulating layer and within the contact opening as a combined ohmic contact and glue layer. In a first embodiment, a tungsten layer is deposited overlying the silicide layer. The tungsten layer not within the contact opening is removed to complete the formation of the tungsten plug metallization. In a second embodiment, the silicide layer not within the contact opening is selectively removed and a tungsten layer is selectively deposited overlying the silicide layer within the contact opening to complete formation of the tungsten plug metallization in the fabrication of an integrated circuit.
摘要:
A method for fabricating shallow trench isolation using a gradient-doped polysilicon trench-fill and a chemical/mechanical polishing that improves substrate planarity was achieved. The method involves forming shallow trenches in a silicon substrate having a silicon nitride layer on the surface. After selectively oxidizing silicon exposed in the trenches, a second silicon nitride layer is deposited, and a composite polysilicon layer consisting of an undoped polysilicon layer and a gradient-doped polysilicon layer is deposited filling the trenches. The composite polysilicon layer is then chemical/mechanically polished back. The gradient-doped polysilicon layer improves the removal rate uniformity across the substrate (wafer) by removing the heavily doped regions at a faster rate than undoped or lightly doped regions. This results in improved global planarity which improves the polysilicon dishing in the trenches near the edge of the substrate. A step-wise doping gradient was found to achieve the best removal rate uniformity across the substrate. The undoped polysilicon remaining in the trenches is then thermally oxidized to eliminate dishing in wide trenches, and the silicon nitride layers are removed by selectively etching to complete the shallow trench isolation.
摘要:
A dual damascene process using selective tungsten chemical vapor deposition is provided for forming composite structures for local interconnects comprising line trenches with contact holes, and composite structures for intermetal interconnects comprising line trenches with via holes. It is shown that by forming a seed layer in judiciously selected portions of the dual damascene structure and depositing tungsten selectively in one step, contact holes and via holes can be formed free of voids and key-holes.