摘要:
The present invention provides a multi-branch equalizer processing module operable to cancel interference associated with received radio frequency (RF) burst(s). This multi-branch equalizer processing module includes both a first equalizer processing branch and a second equalizer processing branch. The first equalizer processing branch is operable to be trained based upon known training sequences and equalize the received RF burst. This results in soft samples or decisions which in turn may be converted to data bits. The soft samples are processed with a de-interleaver and channel decoder, where the combination is operable to produce a decoded frame of data bits from the soft samples. A re-encoder may re-encode the decoded frame to produce re-encoded or at least partially re-encoded data bits. An interleaver then processes the at least partially re-encoded data bits to produce and at least partially re-encoded burst. The second equalizer processing branch uses the at least partially re-encoded data bits to train linear equalizer(s) within the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. This results in alternate soft samples or decisions which in turn may be converted to alternate data bits. The alternate soft samples are processed with the de-interleaver and channel decoder, where the combination is operable to produce an alternate decoded frame of data bits from the alternate soft samples. This allows interfering signals to be cancelled and more accurate processing of the received RF bursts to occur.
摘要:
Equalizer training method using re-encoded bits and known training sequences. A multi-branch equalizer processing module is operable to cancel interference associated with received radio frequency (RF) burst(s) (e.g., using at least a first equalizer processing branch and a second equalizer processing branch). The first equalizer processing branch is operable to be trained based upon known training sequences and to equalize the received RF burst. The second equalizer processing branch uses at least partially re-encoded data bits to train linear equalizer(s) within the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. The cooperation operation of these and other various components allows interfering signals to be cancelled and for more accurate processing of the received RF bursts to occur.
摘要:
The present invention provides a multi-branch equalizer processing module operable to cancel interference associated with received radio frequency (RF) burst(s). This multi-branch equalizer processing module includes both a first equalizer processing branch and a second equalizer processing branch. The first equalizer processing branch is operable to be trained based upon known training sequences and equalize the received RF burst. This results in soft samples or decisions which in turn may be converted to data bits. The soft samples are processed with a de-interleaver and channel decoder, where the combination is operable to produce a decoded frame of data bits from the soft samples. A re-encoder may re-encode the decoded frame to produce re-encoded or at least partially re-encoded data bits. An interleaver then processes the at least partially re-encoded data bits to produce and at least partially re-encoded burst. The second equalizer processing branch uses the at least partially re-encoded data bits to train linear equalizer(s) within the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. This results in alternate soft samples or decisions which in turn may be converted to alternate data bits. The alternate soft samples are processed with the de-interleaver and channel decoder, where the combination is operable to produce an alternate decoded frame of data bits from the alternate soft samples. This allows interfering signals to be cancelled and more accurate processing of the received RF bursts to occur.
摘要:
The present invention provides a multi-branch equalizer processing module operable to cancel interference associated with received radio frequency (RF) burst(s). This multi-branch equalizer processing module includes both a first equalizer processing branch and a second equalizer processing branch. The first equalizer processing branch is operable to be trained based upon known training sequences and equalize the received RF burst. This results in soft samples or decisions which in turn may be converted to data bits. The soft samples are processed with a de-interleaver and channel decoder, where the combination is operable to produce a decoded frame of data bits from the soft samples. A re-encoder may re-encode the decoded frame to produce re-encoded or at least partially re-encoded data bits. An interleaver then processes the at least partially re-encoded data bits to produce and at least partially re-encoded burst. The second equalizer processing branch uses the at least partially re-encoded data bits to train linear equalizer(s) within the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. This results in alternate soft samples or decisions which in turn may be converted to alternate data bits. The alternate soft samples are processed with the de-interleaver and channel decoder, where the combination is operable to produce an alternate decoded frame of data bits from the alternate soft samples. This allows interfering signals to be cancelled and more accurate processing of the received RF bursts to occur.
摘要:
The present invention provides a multi-branch equalizer processing module operable to cancel interference associated with received radio frequency (RF) burst(s). This multi-branch equalizer processing module includes both a first equalizer processing branch and a second equalizer processing branch. The first equalizer processing branch is operable to be trained based upon known training sequences and equalize the received RF burst. This results in soft samples or decisions which in turn may be converted to data bits. The soft samples are processed with a de-interleaver and channel decoder, where the combination is operable to produce a decoded frame of data bits from the soft samples. A re-encoder may re-encode the decoded frame to produce re-encoded or at least partially re-encoded data bits. An interleaver then processes the at least partially re-encoded data bits to produce and at least partially re-encoded burst. The second equalizer processing branch uses the at least partially re-encoded data bits to train linear equalizer(s) within-the second equalizer processing branch. A buffer may initially store the received RF burst(s), which are retrieved and equalized by the second equalizer processing branch once the linear equalizer(s) are trained. This results in alternate soft samples or decisions which in turn may be converted to alternate data bits. The alternate soft samples are processed with the de-interleaver and channel decoder, where the combination is operable to produce an alternate decoded frame of data bits from the alternate soft samples. This allows interfering signals to be cancelled and more accurate processing of the received RF bursts to occur.
摘要:
Adaptive interference cancellation algorithm using speech mode dependent thresholds. A method of processing radio frequency (RF) bursts dependent on a speech mode associated with data contained within the RF burst is presented. Different voice modes, full rate, half rate, and adaptive multi-channel rates each may require different signal to noise ratio (SNR) conditions in order to be successfully processed. To improve the equalization, the SNR associated with the burst is estimated. Based on the SNR or other related conditions, a decision can be made as to whether or not an interference cancellation burst process should be implemented. For example, any one or more of SNR of the signal, a measure of colored noise within the signal, an indication whether the signal being noise limited or interference limited, and a channel profile of the signal may indicate the presence of interference requiring the cancellation of such interference.
摘要:
A processing module produces improved main channel estimate. This process involves initially estimating the channel impulse response. This result is based on and combined with a known sequences such as that provided by training sequences of the midamble within RF bursts. From this combination, it is possible to produce an estimated signal from a convolution of the channel impulse response and midamble. The estimated signal may be cancelled or subtracted from the received signal to produce a clearer image of the disturber signal. A blind data recovery performed upon the disturber signal. The recovered disturber data may be used as a reference for disturber channel estimation in order to produce a disturber channel impulse response. With the estimated disturber channel impulse response and the recovered disturber data, an estimated disturber signal may be reconstructed and subtracted from the received signal. This allows the cancellation of the estimated disturber signal. Without a clear or dominant disturber signal, a better representation of the main channel impulse response may be produced. This results in more accurate processing of the received RF bursts and improved receiver performance.
摘要:
This invention provides colored noise detection algorithm(s). This colored noise detection algorithm(s) may be implemented with a multi-branch equalizer processing module that enables interference cancellation when colored noise is associated with received radio frequency (RF) bursts. The noise discriminator identifies when the radio frequency (RF) bursts have white noise or colored noise associated with them. Alternatively the noise discriminator may be able to determine and enable interference cancellation in response to an interference-limited received RF burst as opposed to a noise-limited received RF burst. The multi-branch equalizer improves the signal-to-noise ratio by improving the equalization with a second branch operable to be trained based upon known training sequences and at least partially re-encoded data bits.
摘要:
Adaptive interference cancellation algorithm using speech mode dependent thresholds. A method of processing radio frequency (RF) bursts dependent on a speech mode associated with data contained within the RF burst is presented. Different voice modes, full rate, half rate, and adaptive multi-channel rates each may require different signal to noise ratio (SNR) conditions in order to be successfully processed. To improve the equalization, the SNR associated with the burst is estimated. Based on the SNR or other related conditions, a decision can be made as to whether or not an interference cancellation burst process should be implemented. For example, any one or more of SNR of the signal, a measure of colored noise within the signal, an indication whether the signal being noise limited or interference limited, and a channel profile of the signal may indicate the presence of interference requiring the cancellation of such interference.
摘要:
The present invention provides a method of processing radio frequency (RF) bursts dependent on a speech mode associated with data contained within the RF burst. Different voice modes, full rate, half rate, and adaptive multi-channel rates each may require different signal to noise ratio (SNR) conditions in order to be successfully processed. To improve the equalization of the received RF burst(s), the SNR associated with the burst is estimated. Then based on the SNR or other related conditions (i.e. the presence or absence of colored noise, and the estimated channel profile) a decision can be made as to whether or not an interference cancellation burst process should be implemented. For example, the presence of colored noise may indicate the presence of interference requiring the cancellation of such interference, the channel profile as described by the channel length and other associated properties may help determine when an interference cancellation process should be utilized as well, and if there is insufficient SNR, i.e. the SNR is below the predetermined threshold, all indicate that it may be desirable to implement interference cancellation to improve the processing of the received burst(s).