Abstract:
A circuit for avoiding channel interference, including a Wireless Fidelity (Wi-Fi) chip and at least one first single-pole multi-throw switch, where a movable end of the first single-pole multi-throw switch is connected to a signal transmit pin of the Wi-Fi chip; one non-movable end of the first single-pole multi-throw switch is connected to a first signal transmit tributary while another is connected to a second signal transmit tributary; and when the Wi-Fi chip determines that a first channel and a second channel interfere with each other, the movable end of the first single-pole multi-throw switch is controlled to connect to the second non-movable end of the first single-pole multi-throw switch, where the first channel is a wireless local area network channel, and the second channel is different from the wireless local area network channel.
Abstract:
A circuit for avoiding channel interference, including a Wireless Fidelity (Wi-Fi) chip and at least one first single-pole multi-throw switch, where a movable end of the first single-pole multi-throw switch is connected to a signal transmit pin of the Wi-Fi chip; one non-movable end of the first single-pole multi-throw switch is connected to a first signal transmit tributary while another is connected to a second signal transmit tributary; and when the Wi-Fi chip determines that a first channel and a second channel interfere with each other, the movable end of the first single-pole multi-throw switch is controlled to connect to the second non-movable end of the first single-pole multi-throw switch, where the first channel is a wireless local area network channel, and the second channel is different from the wireless local area network channel.