Abstract:
A charger and a charging system are provided. The charger includes: a rectifier, a transformer, a first diode, a capacitor, a voltage sampling feedback unit, a pulse width modulation (PWM) controller, a battery voltage feedback unit and a semiconductor switching component, where the battery voltage feedback unit is added in the charger to detect battery voltage of a terminal, and the detected battery voltage of the terminal is fed back to a voltage sampling feedback unit inside the charger, so that the voltage sampling feedback unit can adjust an output voltage of the charger in real time according to an actual battery voltage of the terminal, and therefore, the output voltage of the charger gradually rises along with an increase of the battery voltage of the terminal, thereby effectively reducing energy consumption of the charger and achieving a purpose of energy saving.
Abstract:
A voltage driving apparatus (1) for a power amplifier, a power amplifying system, a power supply device and a communication device are disclosed. The voltage driving apparatus (1) for the power amplifier includes a voltage input module (11), a voltage output module (12), a signal input module (13), and a control module (14). The voltage output module (12) is connected to the power amplifier to provide a voltage. The signal input module (13) is configured to receive a variable input electric signal. The control module (14) is electrically connected to the voltage input module (11), the voltage output module (12), and the signal input module (13) and configured to dynamically adjust the output voltage of the voltage output module (12) according to the variable input electric signal received by the signal input module (13).
Abstract:
A charger and a charging system are provided. The charger includes: a rectifier, a transformer, a first diode, a capacitor, a voltage sampling feedback unit, a pulse width modulation (PWM) controller, a battery voltage feedback unit and a semiconductor switching component, where the battery voltage feedback unit is added in the charger to detect battery voltage of a terminal, and the detected battery voltage of the terminal is fed back to a voltage sampling feedback unit inside the charger, so that the voltage sampling feedback unit can adjust an output voltage of the charger in real time according to an actual battery voltage of the terminal, and therefore, the output voltage of the charger gradually rises along with an increase of the battery voltage of the terminal, thereby effectively reducing energy consumption of the charger and achieving a purpose of energy saving.
Abstract:
An audio and video signal transmission interface apparatus includes a left sound channel interface, a right sound channel interface, a multimedia terminal interface, and a ground interface; where a first power supply and a first resistor are connected in series in the multimedia terminal interface; and the apparatus further includes a voltage detecting module, a determining module, a control module, and a second resistor connected in series in the multimedia terminal interface, where a resistance value of the second resistor is greater than an internal resistance value of an audio and video terminal and smaller than an internal resistance value of a microphone terminal in reverse connection; the determining module identifies different types of transmission lines by using a voltage value measured by the voltage detecting module; and the control module is configured to implement adaptation of different transmission lines.
Abstract:
An audio and video signal transmission interface apparatus includes a left sound channel interface, a right sound channel interface, a multimedia terminal interface, and a ground interface; where a first power supply and a first resistor are connected in series in the multimedia terminal interface; and the apparatus further includes a voltage detecting module, a determining module, a control module, and a second resistor connected in series in the multimedia terminal interface, where a resistance value of the second resistor is greater than an internal resistance value of an audio and video terminal and smaller than an internal resistance value of a microphone terminal in reverse connection; the determining module identifies different types of transmission lines by using a voltage value measured by the voltage detecting module; and the control module is configured to implement adaptation of different transmission lines.