Abstract:
A tap photodetector includes at least one detection unit configured to detect an optical signal. Each detection unit may separately detect an optical signal. Each detection unit includes a transparent zone and a detection zone. The transparent zone is configured to transmit a part of an optical signal, and the detection zone is disposed on a periphery of the transparent zone and is configured to detect another part of the optical signal that does not pass through the transparent zone.
Abstract:
Embodiments of the present invention provide an optical splitting device, an optical multiplexing device and method, and an optical add-drop multiplexer, which relate to the technical field of communications, and are invented for improving the performance and decreasing the cost. The optical splitting device includes a substrate, where an anti-reflective coating is disposed on an upper surface of the substrate and a filter membrane is disposed at a lower surface of the substrate; and further includes a light redirecting portion disposed opposite to the filter membrane. An optical signal is incident to the filter membrane at a first specified angle, a light wave of a first wavelength in the optical signal penetrates the filter membrane, so that the light wave of the first wavelength is separated from the optical signal.
Abstract:
A distributed base station signal transmission system is provided. The system includes a first multiplexing and demultiplexing unit, which is configured to multiplex a downlink signal emitted by the base band unit and output the downlink signal to the remote radio unit, a second multiplexing and demultiplexing unit, which is configured to multiplex an uplink signal emitted by the remote radio unit and output the uplink signal to the base band unit; a first colorless optical module receives and parse the uplink signal and generate the downlink signal; and a second colorless optical module is configured to receive and parse the downlink signal and generate the uplink signal. The present invention requires only one or a pair of fibers to implement interconnection between BBUs and RRUs, and does not need to use a large number of fibers and a metro wavelength division multiplexing network.
Abstract:
A distributed base station signal transmission system is provided. The system includes a first multiplexing and demultiplexing unit, which is configured to multiplex a downlink signal emitted by the base band unit and output the downlink signal to the remote radio unit, a second multiplexing and demultiplexing unit, which is configured to multiplex an uplink signal emitted by the remote radio unit and output the uplink signal to the base band unit; a first colorless optical module receives and parse the uplink signal and generate the downlink signal; and a second colorless optical module is configured to receive and parse the downlink signal and generate the uplink signal. The present invention requires only one or a pair of fibers to implement interconnection between BBUs and RRUs, and does not need to use a large number of fibers and a metro wavelength division multiplexing network.
Abstract:
Embodiments of the present invention provide an optical splitting device, an optical multiplexing device and method, and an optical add-drop multiplexer, which relate to the technical field of communications, and are invented for improving the performance and decreasing the cost. The optical splitting device includes a substrate, where an anti-reflective coating is disposed on an upper surface of the substrate and a filter membrane is disposed at a lower surface of the substrate; and further includes a light redirecting portion disposed opposite to the filter membrane. An optical signal is incident to the filter membrane at a first specified angle, a light wave of a first wavelength in the optical signal penetrates the filter membrane, so that the light wave of the first wavelength is separated from the optical signal.