摘要:
A refrigeration system for multi-temperature and single-temperature applications combines a refrigeration circuit and a single-phase fluid heat-transfer circuit in heat-conducting contact through a thermoelectric device. A vapor compression cycle provides a first stage of cooling and the thermoelectric device in conjunction with the heat-transfer circuit provides the second stage of cooling. Polarity of the thermoelectric device can be reversed to provide a defrost function for the refrigeration system.
摘要:
A compressor is provided and may include a shell, a compression mechanism, a motor, and a diagnostic system that determines a system condition. The diagnostic system may include a processor and a memory and may predict a severity level of the system condition based on at least one of a sequence of historical-fault events and a combination of the types of the historical-fault events.
摘要:
A system is provided and may include a compressor having a motor and a refrigeration circuit including an evaporator and a condenser fluidly coupled to the compressor. The system may further include a first sensor producing a signal indicative of one of current and power drawn by the motor, a second sensor producing a signal indicative of a saturated condensing temperature, and a third sensor producing a signal indicative of a liquid-line temperature. Processing circuitry may processes the current or power signal to determine a derived condenser temperature and may compare the derived condenser temperature to the saturated condensing temperature received from the second sensor to determine a subcooling associated with a refrigerant charge level of the refrigeration circuit.
摘要:
Systems and methods for detecting various system conditions in a fluid delivery system (such as an HVAC system) based on a motor parameter are disclosed. Embodiments of the present invention relate to detecting: filter condition, frozen coil condition, register condition, energy efficiency, system failure, or any combination thereof. Embodiments of the present invention relate to detecting fluid delivery system conditions based on motor parameters including system current, system power, system efficiency, motor current, motor power, motor efficiency, and/or a change (or rate of change) in motor parameters. Techniques for responding to a clogged filter and a frozen coil are also disclosed. Also disclosed are techniques for characterizing a fluid delivery system off-site, prior to system installation.
摘要:
A system and method includes a compressor operable in a refrigeration circuit and including a motor, a current sensor detecting current supplied to the motor, a discharge line temperature sensor detecting discharge line temperature of the compressor, and processing circuitry receiving current data from the current sensor and discharge line temperature data from the discharge line temperature sensor and processing the current data and the discharge line temperature data to determine a capacity of the refrigeration circuit.
摘要:
A system and method for calculating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. An evaporator sensor outputs an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature. An inverter drive modulates electric power delivered to the compressor to modulate a speed of the compressor. The control module is connected to the inverter drive and receives the evaporator signal, monitors electrical power data and compressor speed data from said inverter drive, and calculates at least one of a condenser temperature and a condenser pressure based on the evaporator signal, the electrical power data, and the compressor speed data.
摘要:
A method includes operating a compressor of a heat pump system and is selectively providing vapor to a vapor injection port of the compressor via a vapor injection line and vapor injection valve. The method further includes determining a frost condition of a first and second heat exchanger of the heat pump system and closing a vapor injection valve to prevent fluid flow into the compressor at the vapor injection port. A direction of refrigerant flow is reversed to direct vaporized refrigerant to the one of said first and second heat exchangers experiencing the frost condition. The vapor injection valve is opened after a first predetermined time period following reversal of the refrigerant flow. The method further includes closing the vapor injection valve and reversing a direction of refrigerant flow within the heat pump system once the vapor injection valve is closed for a second predetermined time period.
摘要:
A heat-pump system may include a compressor, an outdoor heat exchanger including an outdoor coil, an indoor heat exchanger including an indoor coil, and a sensor assembly including a first sensor disposed in the outdoor coil, a second sensor disposed in the indoor coil, and a third sensor disposed between the outdoor heat exchanger and the indoor heat exchanger. A controller may receive data from the first sensor, the second sensor, and the third sensor and may determine a first system operating parameter when the heat-pump system is operating in a cooling mode and a second system operating parameter when the heat-pump system is operating in a heating mode.
摘要:
A system includes a compressor and a compressor motor functioning in a refrigeration circuit. A sensor produces a signal indicative of one of current and power drawn by the motor and a liquid-line temperature sensor provides a signal indicative of a temperature of liquid circulating within the refrigeration circuit. Processing circuitry processes the current or power signal to determine a condenser temperature of the refrigeration circuit and a subcooling value of the refrigeration circuit from the condenser temperature and the liquid-line temperature signal.
摘要:
A system including an evaporator, a variable capacity compressor coupled in fluid communication with the evaporator, a condenser coupled in fluid communication between the compressor and the evaporator, an expansion valve disposed intermediate the condenser and the evaporator, and an isolation valve disposed intermediate the condenser and the expansion valve is provided. The isolation valve is in communication with the compressor to respectively synchronize opening and closing thereof with on- and off-cycles of the compressor to prohibit migration of liquid refrigerant. In an alternative embodiment, first and second check valves are respectively associated with the compressor and the condensor for prohibiting reverse migration of refrigerant during off-cycle.