Abstract:
A portable unit with an endfire antenna and operating at 60 GHz makes an optimum communication channel with an endfire antenna in an array of antennas distributed over the area of a ceiling. The portable unit is pointed towards the ceiling and the system controlling the ceiling units selects and adjusts the positioning of an endfire antenna mounted on a 3-D adjustable rotatable unit. Several transceivers can be mounted together, offset from one another, to provide a wide coverage in both azimuth direction and elevation direction. These units can be rigidly mounted as an array in a ceiling apparatus. The system controlling the ceiling array selects one of the transceivers in one of the units to make the optimum communication channel to the portable unit. The system includes the integration of power management features by switching between Wi-Fi in favor of the 60 GHz channel.
Abstract:
A portable unit with an endfire antenna and operating at 60 GHz makes an optimum communication channel with an endfire antenna in an array of antennas distributed over the area of a ceiling. The portable unit is pointed towards the ceiling and the system controlling the ceiling units selects and adjusts the positioning of an endfire antenna mounted on a 3-D adjustable rotatable unit. Several transceivers can be mounted together, offset from one another, to provide a wide coverage in both azimuth direction and elevation direction. These units can be rigidly mounted as an array in a ceiling apparatus. The system controlling the ceiling array selects one of the transceivers in one of the units to make the optimum communication channel to the portable unit. The system includes the integration of power management features by switching between Wi-Fi in favor of the 60 GHz channel.
Abstract:
The LTCC (Low Temperature Co-fired Ceramic) substrate is used to form an antenna structure operating at 60 GHz. The dielectric constant is high and ranges from 5 to 8. The substrate thickness is fabricated with a thickness between 360 μm to 700 μm. The large dielectric constant and large thickness of the substrate creates a guiding wave in the LTCC that forms an endfire antenna. A high gain signal of 10 dB in a preferred direction occurs by placing the microstrip fed dipole structure in the center of the LTCC substrate creating a dielectric cavity resonator. The creation of a slot in the LTCC substrate between the two microstrip fed dipole structures eliminates beam tilting and allows for the two microstrip fed dipole structures to reduce the coupling to each other thereby providing substantially two isolated endfire antennas. These antennas can be used as multiple receive or transmit antennas.