摘要:
A membrane-electrode binder for a fuel cell, a method of manufacturing the binder, and a fuel cell comprising the binder are provided, in which the membrane-electrode binder comprises a dual electrode constituted by a first electrode and a second electrode in a two-layer form, and a polymer electrolyte membrane disposed on the dual electrode, the dual electrode comprising an electrode substrate and a catalyst layer formed thereon. In detail, the membrane-electrode binder comprises the dual electrode that is constituted by the first electrode obtained by using a PBI-based binder, the second electrode obtained by using a PTFE-based binder, and an inorganic acid doped PBI-based polymer electrolyte membrane disposed on the dual electrode and coming in contact with the first electrode. In the configuration of the dual electrode, the PBI-based binder used for manufacturing the first electrode contributes to enhancing an adhesive strength with the inorganic acid doped PBI-based polymer electrolyte membrane, and the PTFE-based binder used for manufacturing the second electrode contributes to suppressing the emission of an inorganic acid from the inorganic acid doped PBI-based polymer electrolyte membrane, together improving the performance of a fuel cell.
摘要:
Provided is an MEA for fuel cell containing hygroscopic inorganic material such as TEOS (tetraethylorthosilicate), zirconium propoxide or titanium t-butoxide.
摘要:
Disclosed are a multi-layered electrode for fuel cell and a method for producing the same, wherein the electrode can be operated under non-humidification and normal temperature, the flooding of the electrode catalyst layer can be prevented, and the long-term operation characteristic can be increased due to the prevention of the loss of the electrode catalyst layer.
摘要:
A separator for cooling an MCFC has a cooling gas flow path provided in the separator, a cooling anode gas or a cooling cathode gas flowing through the cooling gas flow path, the cooling anode gas or the cooling cathode gas having a temperature lower than that of a general anode gas or a general cathode gas which is supplied to an anode or a cathode of the MCFC.
摘要:
A separation plate having a gas flow path is segmented for analyzing MEA performance without segmenting an electrode or a gas diffusion layer. In advance, a MEA is operated for a long time in a real stack environment using a typical separation plate which is not segmented, and then the segmented separation plate for analyzing MEA performance is mounted to the MEA.
摘要:
Provided is an MEA for fuel cell containing hygroscopic inorganic material such as TEOS (tetraethylorthosilicate), zirconium propoxide or titanium t-butoxide.
摘要:
The present invention relates to a honeycomb type SOFC wherein a first material, density of which is lowered upon phase-transition, a second material having higher thermal expansion coefficient than that of an electrode supporter, or a composite material of the first and second materials is filled in the electrode channel to which the collector is bonded as a material which can form an oxide under the electrode atmosphere, and a manufacturing method thereof.
摘要:
Disclosed are a multi-layered electrode for fuel cell and a method for producing the same, wherein the electrode can be operated under non-humidification and normal temperature, the flooding of the electrode catalyst layer can be prevented, and the long-term operation characteristic can be increased due to the prevention of the loss of the electrode catalyst layer.
摘要:
Disclosed is a membrane-electrode assembly (MEA) that prevents an electrolyte membrane from being damaged upon the fabrication of a single cell or a stack of fuel cells. The MEA further includes a guard gasket interposed between conventional gaskets, wherein the guard gasket has a thickness corresponding to 70%-95% of the thickness of the electrolyte membrane. The MEA ensures mechanical protection of the electrolyte membrane, and thus prevents the electrolyte membrane from being damaged by an excessive binding pressure upon the fabrication of a single cell or a stack of fuel cells. Furthermore, the contact resistance between the electrolyte membrane and the catalyst layer and the contact resistance between the gas diffusion layer and the catalyst layer can be minimized, thereby improving the quality of a fuel cell.
摘要:
Disclosed is a membrane-electrode assembly (MEA) that prevents an electrolyte membrane from being damaged upon the fabrication of a single cell or a stack of fuel cells. The MEA further includes a guard gasket interposed between conventional gaskets, wherein the guard gasket has a thickness corresponding to 70%-95% of the thickness of the electrolyte membrane. The MEA ensures mechanical protection of the electrolyte membrane, and thus prevents the electrolyte membrane from being damaged by an excessive binding pressure upon the fabrication of a single cell or a stack of fuel cells. Furthermore, the contact resistance between the electrolyte membrane and the catalyst layer and the contact resistance between the gas diffusion layer and the catalyst layer can be minimized, thereby improving the quality of a fuel cell.