摘要:
The embodiment relates to a display device having an improved aperture ratio and capacitance, and a fabrication method of the display device, in which the display device may include a thin film transistor, which includes: an active layer, a gate electrode, a source electrode electrically connected to the active layer, a drain electrode electrically connected to the active layer, and a gate insulating material formed between the active layer and the gate electrode, where the gate insulating material includes a first layer, a second layer and a third layer, where the second layer has a thickness between about 0.1 to about 1.5 times a thickness of the first layer, and where the third layer has a thickness between about 2 to about 12 times the thickness of the second layer.
摘要:
In a display panel, an array substrate includes a pixel electrode disposed in a pixel area and a switching element connected to the pixel electrode. A color filter substrate is combined with the array substrate. The color filter substrate includes a light-blocking layer, a color filter layer, and a common electrode. The color filter layer is disposed on the light-blocking layer. The common electrode is disposed on the color filter layer. The common electrode has an opening disposed in the pixel area and extending along the longitudinal direction. The opening has left, right, upper and lower sides and a plurality of notch parts disposed at the upper and lower sides. An outermost notch part is spaced apart from the left side or the right side by 20 μm to 30 μm.
摘要:
In a lower substrate, a display apparatus having the lower substrate and a method of manufacturing the lower substrate, the lower substrate includes a pixel area and a circuit area. An image is displayed in the pixel area. A first signal electrode is disposed in a circuit area. A first insulating layer includes an opening, through which the first signal electrode is exposed. A second signal electrode is disposed on the first insulating layer in the circuit area, and spaced apart from the first signal electrode. A second insulating layer is disposed on the first insulating layer, and includes a contact hole, through which the first and second signal electrodes are exposed. A conductive layer electrically connects the first signal electrode to the second signal electrode. Therefore, a manufacturing process is simplified so that a yield of the lower substrate is increased.
摘要:
A gate wire including gate lines, gate electrodes, and gate pads and extending in a transverse direction is formed on a substrate. A gate insulating layer is formed thereafter, and a semiconductor layer and an ohmic contact layer are sequentially formed thereon. A conductive material is deposited and patterned to form a data wire inducing data lines intersecting the gate lines, source electrodes, drain electrodes, and data pads. A protective layer made of silicon nitride is deposited on the substrate, and an organic insulating layer made of a photosensitive organic insulating material is coated on the protective layer. The organic insulating layer is patterned to form an unevenness pattern on its surface and first contact holes exposing the protective layer opposite the drain electrodes. Subsequently, the surface of the organic insulating layer is treated using inactive gas such as Ar, and then the protective layer is patterned together with the gate insulating layer by photo etch using a photoresist pattern to form contact holes respectively exposing the drain electrodes, the gate pads, and the data pads. Next, indium-tin-oxide or indium-zinc-oxide is deposited and patterned to form transparent electrodes, subsidiary gate pads, and subsidiary data pads respectively connected to the drain electrodes, the gate pads and the data pads. Finally, a reflective conductive material is deposited and patterned to form reflecting films having respective apertures in the pixel area on the transparent electrodes.
摘要:
A gate wire including gate lines, gate electrodes, and gate pads and extending in a transverse direction is formed on a substrate. A gate insulating layer is formed thereafter, and a semiconductor layer and an ohmic contact layer are sequentially formed thereon. A conductive material is deposited and patterned to form a data wire inducing data lines intersecting the gate lines, source electrodes, drain electrodes, and data pads. A protective layer made of silicon nitride is deposited on the substrate, and an organic insulating layer made of a photosensitive organic insulating material is coated on the protective layer. The organic insulating layer is patterned to form an unevenness pattern on its surface and first contact holes exposing the protective layer opposite the drain electrodes. Subsequently, the surface of the organic insulating layer is treated using inactive gas such as Ar, and then the protective layer is patterned together with the gate insulating layer by photo etch using a photoresist pattern to form contact holes respectively exposing the drain electrodes, the gate pads, and the data pads. Next, indium-tin-oxide or indium-zinc-oxide is deposited and patterned to form transparent electrodes, subsidiary gate pads, and subsidiary data pads respectively connected to the drain electrodes, the gate pads and the data pads. Finally, a reflective conductive material is deposited and patterned to form reflecting films having respective apertures in the pixel area on the transparent electrodes.
摘要:
In a lower substrate, a display apparatus having the lower substrate and a method of manufacturing the lower substrate, the lower substrate includes a pixel area and a circuit area. An image is displayed in the pixel area. A first signal electrode is disposed in a circuit area. A first insulating layer includes an opening, through which the first signal electrode is exposed. A second signal electrode is disposed on the first insulating layer in the circuit area, and spaced apart from the first signal electrode. A second insulating layer is disposed on the first insulating layer, and includes a contact hole, through which the first and second signal electrodes are exposed. A conductive layer electrically connects the first signal electrode to the second signal electrode. Therefore, a manufacturing process is simplified so that a yield of the lower substrate is increased.
摘要:
A liquid crystal display includes a display area that can be seen by a user, and a peripheral area external to the display area. The display area and the peripheral area are provided with pixel electrodes including transparent electrodes and reflective electrodes. The reflective electrodes on the display area have holes exposing the transparent electrodes, while the reflective electrodes on the peripheral area have no hole.
摘要:
A gate wire including gate lines, gate electrodes, and gate pads and extending in a transverse direction is formed on a substrate. A gate insulating layer is formed thereafter, and a semiconductor layer and an ohmic contact layer are sequentially formed thereon. A conductive material is deposited and patterned to form a data wire inducing data lines intersecting the gate lines, source electrodes, drain electrodes, and data pads. A protective layer made of silicon nitride is deposited on the substrate, and an organic insulating layer made of a photosensitive organic insulating material is coated on the protective layer. The organic insulating layer is patterned to form an unevenness pattern on its surface and first contact holes exposing the protective layer opposite the drain electrodes. Subsequently, the surface of the organic insulating layer is treated using inactive gas such as Ar, and then the protective layer is patterned together with the gate insulating layer by photo etch using a photoresist pattern to form contact holes respectively exposing the drain electrodes, the gate pads, and the data pads. Next, indium-tin-oxide or indium-zinc-oxide is deposited and patterned to form transparent electrodes, subsidiary gate pads, and subsidiary data pads respectively connected to the drain electrodes, the gate pads and the data pads. Finally, a reflective conductive material is deposited and patterned to form reflecting films having respective apertures in the pixel area on the transparent electrodes.
摘要:
In a lower substrate, a display apparatus having the lower substrate and a method of manufacturing the lower substrate, the lower substrate includes a pixel area and a circuit area. An image is displayed in the pixel area. A first signal electrode is disposed in a circuit area. A first insulating layer includes an opening, through which the first signal electrode is exposed. A second signal electrode is disposed on the first insulating layer in the circuit area, and spaced apart from the first signal electrode. A second insulating layer is disposed on the first insulating layer, and includes a contact hole, through which the first and second signal electrodes are exposed. A conductive layer electrically connects the first signal electrode to the second signal electrode. Therefore, a manufacturing process is simplified so that a yield of the lower substrate is increased.
摘要:
A liquid crystal display apparatus includes a lower substrate, an upper substrate and a liquid crystal layer interposed between the lower substrate and the upper substrate. The lower substrate includes a display part for displaying image and a driving part for providing the display part with a driving signal. The upper substrate includes a common electrode and an insulating member that electrically insulates the common electrode from the driving part. The insulating member has a lower dielectric constant than the liquid crystal layer. Thus, a parasitic capacitance between the driving part and the common electrode is reduced to prevent malfunction of the driving part, and a display quality is enhanced.