Abstract:
A charging system for improving a power factor and a current quality in a grid stage is provided. The charging system includes a rectifying circuit that is configured to rectify a grid power and a converter that is configured to receive a voltage-current rectified by the rectifying circuit and convert the voltage-current into a charge voltage-current to be provided to a battery. A capacitor is connected across a connection end of the rectifying circuit and the converter. The converter includes a first high frequency switching circuit, a transformer, and a second high frequency switching circuit.
Abstract:
A torque limit apparatus includes a user interface device that receives a speed setting value and a torque setting value of a motor from a user and outputs a state of the motor and a motor control device that controls a speed of the motor depending on speed set by the user and to interrupt an operation of the motor when torque of the motor reaches torque set by the user.
Abstract:
Disclosed herein is a charging system using a wound rotor synchronous motor, capable of increasing a battery charging capacity while reducing the volume, weight, and/or cost of a vehicle increased due to an on-vehicle charging circuit. The charging system includes an inverter converting a DC output of a battery into a plurality of AC signals having different phases, a wound rotor synchronous motor having a plurality of stator coils, to which the AC signals having different phases are respectively input, and a field coil forming a mutual inductance with the stator coils, the field coil being installed in a rotor to form a magnetic flux using the DC output of the battery, and a controller allowing the battery and the field coil to be insulated from each other in a charge mode in which electricity from a grid is applied to the field coil of the wound rotor synchronous motor.
Abstract:
Disclosed herein is a charging system using a wound rotor synchronous motor (WRSM), capable of reducing volume, weight, and cost of a vehicle increased due to an on-board charging circuit and increasing a battery charge capacity. The charging system using a wound rotor synchronous motor (WRSM) includes an inverter converting power of a battery into alternating current (AC) powers having a plurality of different phases, a WRSM having a plurality of stator coils each receiving AC power of a different phase and a field coil forming mutual inductance with the plurality of stator coils and installed in a rotor to form a magnetic flux using power of the battery, and a controller controlling the battery side and the field coil side are insulated from each other in a charge mode in which grid power is applied to the field coil side of the WRSM.
Abstract:
A fail-safe method and apparatus for high voltage parts in a hybrid vehicle is provided. In the fail-safe method, it is determined whether or not a high voltage main relay is turned off. Here, when the high voltage main relay is turned off, a voltage is charged into a direct current (DC) link using a counter electromotive force generated in a motor generator linked with a revolution of an engine. Voltage control is performed such that the voltage of the DC link is uniformly maintained using an inverter for the motor generator.
Abstract:
A vehicle charger is provided that receives power from electric vehicle supply equipment to charge a battery mounted within an electric. The charger includes a charging controller that is configured to execute a charging mode of the vehicle charger and a main power supplier that is configured to supply main power to the charging controller. In addition, an auxiliary power supplier is configured to supply battery power as auxiliary power when receiving a control pilot signal generated from the electric vehicle supply equipment. A power controller is configured to detect the control pilot signal and turn the main power supply and the auxiliary power supply on and off based on state information regarding the detected control pilot signal and a charging mode control signal output from the charging controller.
Abstract:
A system and method for controlling energy of an eco-friendly vehicle are provided and include turning off, by a controller, a main relay in response to sensing interlock by means of a detection circuit and charging a secondary batter by discharging voltage of a capacitor in an inverter to the secondary battery, under control of voltage output from a low voltage DC converter after the main relay is turned off. In addition, the controller is configured to discharge DC-link voltage to a driving motor by operating the inverter after charging the second battery.
Abstract:
A vehicle charger is provided that receives power from electric vehicle supply equipment to charge a battery mounted within an electric. The charger includes a charging controller that is configured to execute a charging mode of the vehicle charger and a main power supplier that is configured to supply main power to the charging controller. In addition, an auxiliary power supplier is configured to supply battery power as auxiliary power when receiving a control pilot signal generated from the electric vehicle supply equipment. A power controller is configured to detect the control pilot signal and turn the main power supply and the auxiliary power supply on and off based on state information regarding the detected control pilot signal and a charging mode control signal output from the charging controller.
Abstract:
A fail-safe method and apparatus for high voltage parts in a hybrid vehicle is provided. In the fail-safe method, it is determined whether or not a high voltage main relay is turned off. Here, when the high voltage main relay is turned off, a voltage is charged into a direct current (DC) link using a counter electromotive force generated in a motor generator linked with a revolution of an engine. Voltage control is performed such that the voltage of the DC link is uniformly maintained using an inverter for the motor generator.
Abstract:
Disclosed herein is a charging system using a wound rotor synchronous motor (WRSM), capable of reducing volume, weight, and cost of a vehicle increased due to an on-board charging circuit and increasing a battery charge capacity. The charging system using a wound rotor synchronous motor (WRSM) includes an inverter converting power of a battery into alternating current (AC) powers having a plurality of different phases, a WRSM having a plurality of stator coils each receiving AC power of a different phase and a field coil forming mutual inductance with the plurality of stator coils and installed in a rotor to form a magnetic flux using power of the battery, and a controller controlling the battery side and the field coil side are insulated from each other in a charge mode in which grid power is applied to the field coil side of the WRSM.