System and method of controlling shift for hybrid electric vehicle

    公开(公告)号:US10207702B2

    公开(公告)日:2019-02-19

    申请号:US15656186

    申请日:2017-07-21

    摘要: A system and a method of controlling a hybrid electric vehicle shift are disclosed. The system includes an engine and a drive motor operating as power sources and a transmission receiving driving torque from one of the engine and the drive motor. A data detector detects a state data for operating the transmission. A vehicle controller calculates a creep torque and an engine setting torque using the state data, determines whether a shift control condition is satisfied based on a position value of an accelerator pedal, calculates an available motor torque using a motor speed at an actual shift start point and a target motor speed when the shift control condition is satisfied, and calculates a first shift input torque using the creep torque, the engine setting torque, the available motor torque, and a first torque apply ratio. The transmission is operated based on the first shift input torque.

    Method of controlling hybrid electric vehicle

    公开(公告)号:US10099678B2

    公开(公告)日:2018-10-16

    申请号:US15379926

    申请日:2016-12-15

    摘要: Provided is a method of controlling a hybrid electric vehicle capable of improving acceleration response upon kick-down. The method includes calculating a rising gradient of a motor speed increasing during kick-down shift based on a present speed of a motor for driving the vehicle which is detected at a control unit in real time, upon detection of demand of kick-down shift due to acceleration operation of a driver, calculating a falling gradient of intervention torque based on the rising gradient of the motor speed at the control unit, determining an entry point of intervention control based on the present speed of the motor detected at the control unit in real time, and performing torque intervention control for controlling driving of the motor in order to output intervention torque, namely, motor torque decreased based on the falling gradient of intervention torque calculated from the determined entry point at the control unit.