Abstract:
A seamless, embossed or cast substrate is formed using a seamless sleeve having a seamless surface relief formed thereon and configured to slide over an cylindrical base in an embossing or casting assembly. The substrate is a flat web, foil, or film of, for example, paper, polyester, polypropylene, metal or other elongated flat material. The surface relief can be applied through interfering ablation, non-interfering ablation, ink jet printing, or other techniques wherein a seamless surface relief is formed onto the seamless sleeve. A method of making a seamless, embossed or cast substrate includes expanding a diameter of a seamless sleeve having a seamless surface relief formed thereon, sliding the expanded seamless sleeve onto a cylindrical base, allowing the diameter of the seamless sleeve to contract around the cylindrical base, and conveying a substrate through the embossing or casting assembly and embossing or casting the seamless surface relief into the substrate.
Abstract:
A seamless, embossed or cast substrate is formed using a seamless sleeve having a seamless surface relief formed thereon and configured to slide over an cylindrical base in an embossing or casting assembly. The substrate is a flat web, foil, or film of, for example, paper, polyester, polypropylene, metal or other elongated flat material. The surface relief can be applied through interfering ablation, non-interfering ablation, ink jet printing, or other techniques wherein a seamless surface relief is formed onto the seamless sleeve. A method of making a seamless, embossed or cast substrate includes expanding a diameter of a seamless sleeve having a seamless surface relief formed thereon, sliding the expanded seamless sleeve onto a cylindrical base, allowing the diameter of the seamless sleeve to contract around the cylindrical base, and conveying a substrate through the embossing or casting assembly and embossing or casting the seamless surface relief into the substrate.
Abstract:
A pan chiller system including a refrigeration package having a condensing unit, a heat exchanger and a pump for circulating a chilled liquid coolant, a pan chiller unit in communication with the refrigeration package and having an outer housing and a food well received within the outer housing and a plurality of hollow divider bars arranged within the food well. An opening is defined between adjacent divider bars, wherein each divider bar is configured for directly receiving the liquid coolant chilled and circulated by the refrigeration package.
Abstract:
A pan chiller system including a refrigeration package having a condensing unit, a heat exchanger and a pump for circulating a chilled liquid coolant, a pan chiller unit in communication with the refrigeration package and having an outer housing and a food well received within the outer housing and a plurality of hollow divider bars arranged within the food well. An opening is defined between adjacent divider bars, wherein each divider bar is configured for directly receiving the liquid coolant chilled and circulated by the refrigeration package.
Abstract:
A pan chiller system including a refrigeration package having a condensing unit, a heat exchanger and a pump for circulating a chilled liquid coolant, a pan chiller unit in communication with the refrigeration package and having an outer housing and a food well received within the outer housing and a plurality of hollow divider bars arranged within the food well. An opening is defined between adjacent divider bars, wherein each divider bar is configured for directly receiving the liquid coolant chilled and circulated by the refrigeration package.