Abstract:
A photoelectric conversion compound is provided. The photoelectric conversion compound has a structure represented by formula (I):
wherein D represents an inorganic luminescent group; each of R1, R2, and R3 independently represents a hydrogen atom or a C1-6 alkyl group; R4 represents a single bond or a C1-6 alkylene group; m represents an integer of 1-10; k represents an integer of 1-1,000; and n represents an integer of 1-10,000.
Abstract:
The disclosure provides a solar cell encapsulating module including a first substrate, a first encapsulating material layer, a metal particle layer, multiple solar cells, a routing layer, a second encapsulating material layer and a second substrate. The first substrate is formed from a light transmittance material. The first encapsulating material layer is formed on the first substrate. The metal particle layer is formed on the first encapsulating material layer. The solar cells are disposed on the metal particle layer. The routing layer is disposed on the solar cells for being electrically connected to the plurality of solar cells. The second encapsulating material layer is formed on the routing layer. The second substrate is disposed on the second encapsulating material layer. The routing layer is disposed on only one side of the solar cells.
Abstract:
A solar cell module is provided. The solar cell module includes a first substrate, a second substrate opposite the first substrate, a cell unit disposed between the first and second substrates, a first thermosetting resin layer disposed between the cell unit and the first substrate, a first thermoplastic resin layer disposed between the cell unit and the first thermosetting resin layer, a second thermosetting resin layer disposed between the cell unit and the second substrate, and a second thermoplastic resin layer disposed between the cell unit and the second thermosetting resin layer.
Abstract:
The disclosure provides a solar cell encapsulating module including a first substrate, a first encapsulating material layer, a metal particle layer, multiple solar cells, a routing layer, a second encapsulating material layer and a second substrate. The first substrate is formed from a light transmittance material. The first encapsulating material layer is formed on the first substrate. The metal particle layer is formed on the first encapsulating material layer. The solar cells are disposed on the metal particle layer. The routing layer is disposed on the solar cells for being electrically connected to the plurality of solar cells. The second encapsulating material layer is formed on the routing layer. The second substrate is disposed on the second encapsulating material layer. The routing layer is disposed on only one side of the solar cells.