Abstract:
A composite powder is provided. The composite powder comprises 80-97 wt % of carbide and 3-20 wt % of blending metal powder comprising cobalt and a first metal powder, wherein the first metal powder is formed of one of aluminum, titanium, iron, nickel, or a combination thereof, and the amount of cobalt is 90-99% of total blending metal powder.
Abstract:
A method of manufacturing an organic-inorganic composite film is provided. The method includes co-sputtering an inorganic target and a fluorine-containing organic polymer target, thereby simultaneously depositing atoms from the inorganic target and atoms from the fluorine-containing organic polymer target on a substrate. As such, an organic-inorganic composite film is obtained. The organic-inorganic composite film includes a homogeneous, amorphous, and nonporous material composed of carbon, fluorine and/or chlorine, oxygen and/or nitrogen, and inorganic element M. The inorganic element M forms chemical bondings with carbon, fluorine, chlorine, oxygen and/or nitrogen, and wherein the bond length forms therefore is less than 2.78 Å.
Abstract:
Disclosed is a method of manufacturing an organic-inorganic composite film. The method includes co-sputtering an inorganic target and a fluorine-containing organic polymer target, thereby simultaneously depositing atoms from the inorganic target and atoms from the fluorine-containing organic polymer target on a substrate. As such, an organic-inorganic composite film is obtained. The organic-inorganic composite film includes a homogeneous, amorphous, and nonporous material composed of carbon, fluorine, oxygen and/or nitrogen, and M. M can be silicon, titanium, aluminum, chromium, or combinations thereof.