Abstract:
A lithium battery structure is provided. The lithium battery structure includes a first metal layer including aluminum foil or stainless steel foil, a second metal layer including copper foil, nickel foil or stainless steel foil, a separator, a first electrode layer, a second electrode layer, and a first functional layer including a first composition. The separator is disposed between the first metal layer and the second metal layer. The first electrode layer is disposed between the first metal layer and the separator. The second electrode layer is disposed between the second metal layer and the separator. The first functional layer is disposed between the first metal layer and the first electrode layer. The first composition includes 20-80 parts by weight of flake conductive material, 1-30 parts by weight of spherical conductive material, 10-50 parts by weight of thermoplastic elastomer and 1-25 parts by weight of nitrogen-containing hyperbranched polymer.
Abstract:
A modified maleimide oligomer is disclosed. The modified maleimide oligomer is made by performing a reaction of a compound having a barbituric acid structure, a free radical capture, and a compound having a maleimide structure. A composition for a battery is also disclosed. The composition includes the modified maleimide oligomer.
Abstract:
A lithium battery includes a positive electrode plate, a negative electrode plate, an electrolyte disposed between the positive electrode plate and the negative electrode plate, a separator disposed in the electrolyte, and an organic-inorganic composite film disposed on the surface of the positive electrode plate, the surface of the negative electrode plate, the surface of the separator, or a combination thereof. The organic-inorganic composite film includes 100 parts by weight of clay, 3 to 35 parts by weight of lignocellulose, and 25 to 270 parts by weight of a first binder.
Abstract:
An ion-conducting material, a core-shell structure containing the ion-conducting material, an electrode prepared with the core-shell structure and a metal-ion battery employing the electrode are provided. The core-shell structure includes a core particle and an organic-inorganic composite layer formed on the surface of the core particle for encapsulating the core particle. The core particle includes lithium cobalt oxide, lithium nickel cobalt oxide, lithium nickel cobalt manganese oxide, or lithium nickel cobalt aluminum oxide. Also, the organic-inorganic composite layer includes nitrogen-containing hyperbranched polymer and an ion-conducting material. The ion-conducting material is a lithium-containing linear polymer or a modified Prussian blue, wherein the modified Prussian blue has an ion-conducting group and the lithium-containing linear polymer has an ion-conducting segment.
Abstract:
An electrolyte is provided. The electrolyte includes a polymer, a lithium salt, and an organic solvent. The polymer is a polymerization product of a reactive additive and an initiator, wherein the reactive additive includes at least an amide group and at least an epoxy group or ethyl group. A composition for electrolyte and a lithium battery employing the electrolyte are also provided.