Abstract:
An organic-inorganic hybrid resin is formed by reacting a polyol organic resin with a polysilsesquioxane polymer. The organic-inorganic hybrid resin has T0, T1, T2, and T3 signals of 29Si-NMR, wherein a ratio of the sum of 3 times the integral value of T0 signal and 2 times the integral value of T1 signal and the integral value of T2 signal and the integral value of T3 signal ((3T0+2T1+T2)/T3) is from 0.3 to 1.2, wherein the T0 signal range is 35 ppm to 40 ppm, the T1 signal range is 48 ppm to 53 ppm, the T2 signal range is 55 ppm to 62 ppm, and the T3 signal range is 63 ppm to 72 ppm.
Abstract:
An electrostatic chuck is provided, the electrostatic chuck includes a base; and an insulating layer, an electrode layer, a first dielectric layer, and a second dielectric layer sequentially stacked on the base. The first dielectric layer is aluminum oxide (Al2O3) or aluminum nitride (AlN). A material of the second dielectric layer is different from a material of the first dielectric layer, and the second dielectric layer includes titanium element, IVA group element, and oxygen element.
Abstract:
A polymer is provided, which is formed by reacting a diol having hydrogenated bisphenol group with a bis-epoxy compound. The diol having hydrogenated bisphenol group may have a chemical structure of wherein each of R1 is independently H or methyl, and m and n are independently integers of 1 to 4. The bis-epoxy compound can be or a combination thereof, wherein each of R2 is independently H or methyl, and each of R3 is independently H or methyl.
Abstract:
A method for manufacturing a water-based coating material is provided, including: (a) reacting tetraalkoxysilane, acidic aqueous solution of vanadium salt, and trialkoxyalkylsilane to form an oligomer; (b) reacting the oligomer with colloidal silica particles to form a modified oligomer; and (c) reacting the modified oligomer with trialkoxyepoxysilane to obtain a water-based coating material.
Abstract:
A method for forming an inorganic passivation material is provided. The method includes mixing about 5 to 80 parts by weight of trialkoxysilane, about 10 to 80 parts by weight of tetraalkoxysilane, and about 1 to 30 parts by weight of catalyst to perform a reaction at pH of about 0.05 to 4 to form an inorganic resin material. The inorganic resin material is modified by phosphate ester to form an inorganic passivation material, wherein phosphate ester is about 0.1-10 parts by weight based on 100 parts by weight of the inorganic resin material. An inorganic passivation material and a passivation protective film produced therefrom are also provided.