Abstract:
An electrostatic chuck is provided, the electrostatic chuck includes a base; and an insulating layer, an electrode layer, a first dielectric layer, and a second dielectric layer sequentially stacked on the base. The first dielectric layer is aluminum oxide (Al2O3) or aluminum nitride (AlN). A material of the second dielectric layer is different from a material of the first dielectric layer, and the second dielectric layer includes titanium element, IVA group element, and oxygen element.
Abstract:
A waterborne polyurethane is provided. The waterborne polyurethane is formed by mixing a polyol, a diisocyanate, a dimethylol alkyl acid, and an epoxy resin into a mixture, and polymerizing the mixture. When the usage amount of the epoxy resin used is 1 part by weight, the usage amount of the polyol is 3 to 30 parts by weight, the usage amount of the diisocyanate is 1 to 10 parts by weight, and the usage amount of the dimethylol alkyl acid is 0.1-3.0 parts by weight. The epoxy resin includes an epoxy resin having a cyclic structure, a triacylglycerol having an epoxy group, or a combination thereof.
Abstract:
An ion exchange resin and a method for preparing the same are provided. An ion exchange resin is formed by a composition, and the composition includes a crosslinking agent and an ionic compound with sulfonate ions. The ionic compound with sulfonate ions is formed by reacting an epoxy resin with an ionic monomer with sulfonate ions or an ionic polymer having sulfonate ions. The ionic monomer and the ionic polymer each has a hydroxyl group or an acid group at the ends. The ionic monomer or the ionic polymer is 40 to 80 parts by weight, and the epoxy resin is 15 to 25 parts by weight, based on 100 parts by weight of the ion exchange resin. An ion exchange resin with a network structure is formed after the ionic compound with sulfonate ions reacts with the crosslinking agent.
Abstract:
An aqueous coating material is provided. The aqueous coating material includes an aqueous resin and a surfactant. The surfactant having a hydrophilic segment of poly(alkylene glycol), a hydrophobic segment of siloxane, and a terminal hydrophilic group. The aqueous resin and the surfactant may have a weight ratio of 100:1 to 100:25.
Abstract:
A method of forming a lignin-based biomass epoxy resin is provided, which includes: (a) mixing a lignin, an acid anhydride compound, and a solvent to react for forming a first intermediate product, (b) reacting the first intermediate compound with a first polyol to form a second intermediate compound, and (c) reacting the second intermediate compound with an epoxy compound to form a lignin-based biomass epoxy resin.